We prove that, in the class of circuits with separated variables in the basis $$ {A_{{{L_0}}}}=\left\{ {x\oplus y} \right\} $$, the complexity of the problem to find all the coefficients of a polynomial of the Boolean function f (x1,…,xn ) given a vector of N = 2n function values is exactly equal n ∙ 2n−1 . In the basis $$ A=\left\{ {x\&y,x\vee y,\bar{x}} \right\} $$ the complexity of this problem is between 3n ∙ 2n−1 and 4n ∙ 2n−1.
[1]
Claude E. Shannon,et al.
A symbolic analysis of relay and switching circuits
,
1938,
Transactions of the American Institute of Electrical Engineers.
[2]
L. H. Harper,et al.
A Class of Boolean Functions with Linear Combinational Complexity
,
1975,
Theor. Comput. Sci..
[3]
О сравнении сложности двух способов реализации некоторых линейных булевых преобразований@@@On the comparison of the complexity of two methods for realizing some linear Boolean transformations
,
1996
.
[4]
О методе разложения для распознавания принадлежности инвариантным классам@@@On a decomposition method for recognizing membership in invariant classes
,
2002
.
[5]
Arnold Schönhage,et al.
Schnelle Multiplikation großer Zahlen
,
1971,
Computing.
[6]
Claus-Peter Schnorr.
Zwei lineare untere Schranken für die Komplexität Boolescher Funktionen
,
2005,
Computing.
[7]
A fast algorithm for the construction of polynomials modulo k for k-valued functions for composite k
,
2011
.
[8]
Быстрый алгоритм построения для $k$-значных функций полиномов по модулю $k$ при составных $k$@@@A fast algorithm for the construction of polynomials modulo $k$ for $k$-valued functions for composite $k$
,
2011
.