BraggNN: fast X-ray Bragg peak analysis using deep learning

We propose BraggNN, a deep-learning based method, to accelerate the most computation-intensive part of polycrystal diffraction data analysis (diffraction signal characterization). The application of BraggNN for real experimental data demonstrates that it can deliver consistent (sometimes even slightly better) results compared with the conventional method while running hundreds of times faster.

[1]  Taghi M. Khoshgoftaar,et al.  A survey on Image Data Augmentation for Deep Learning , 2019, Journal of Big Data.

[2]  S. E. Offerman,et al.  A fast methodology to determine the characteristics of thousands of grains using three‐dimensional X‐ray diffraction. II. Volume, centre‐of‐mass position, crystallographic orientation and strain state of grains , 2012 .

[3]  Ian Foster,et al.  Deep Learning Accelerated Light Source Experiments , 2019, 2019 IEEE/ACM Third Workshop on Deep Learning on Supercomputers (DLS).

[4]  Tao Zhang,et al.  A Survey of Model Compression and Acceleration for Deep Neural Networks , 2017, ArXiv.

[5]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[6]  Meimei Li,et al.  Far-Field High-Energy Diffraction Microscopy: A Non-Destructive Tool for Characterizing the Microstructure and Micromechanical State of Polycrystalline Materials , 2017, Microscopy Today.

[7]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[8]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[9]  S. E. Offerman,et al.  A fast methodology to determine the characteristics of thousands of grains using three-dimensional X-ray diffraction. I. Overlapping diffraction peaks and parameters of the experimental setup , 2012 .

[10]  Arie Shoshani,et al.  Optimizing connected component labeling algorithms , 2005, SPIE Medical Imaging.

[11]  Quoc V. Le,et al.  AutoAugment: Learning Augmentation Policies from Data , 2018, ArXiv.

[12]  Ian Foster,et al.  Scientific Image Restoration Anywhere , 2019, 2019 IEEE/ACM 1st Annual Workshop on Large-scale Experiment-in-the-Loop Computing (XLOOP).

[13]  Jonathan P. Wright,et al.  On the calibration of high-energy X-ray diffraction setups. I. Assessing tilt and spatial distortion of the area detector , 2014 .

[14]  Abhinav Gupta,et al.  Non-local Neural Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[15]  Ian T. Foster,et al.  TomoGAN: low-dose synchrotron x-ray tomography with generative adversarial networks: discussion. , 2019, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  Christophe Fiorio,et al.  Two Linear Time Union-Find Strategies for Image Processing , 1996, Theor. Comput. Sci..

[17]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[18]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[19]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.