Low latitude electrodynamic plasma drifts - A review

Radar and radio measurements have provided detailed information on the dependence of F-region electrodynamic drifts on height, season, solar cycle and magnetic activity. Recently, satellite ion drift and electric field probes have determined the variation of low latitude ionospheric drifts over a large range of altitudes and latitudes. The general characteristics of the quiet time plasma can be explained as resulting from E- and F-region dynamo and interhemispheric coupling processes. The low latitude and equatorial zonal and upward/poleward components of the plasma drift respond differently to geomagnetic activity. Disturbance dynamo effects are responsible for the drift perturbations following periods of enhanced magnetic activity. The prompt penetration of high latitude electric fields to lower latitudes produces large perturbations on the upward/poleward drifts, but has no significant effect on the low latitude and equatorial zonal drifts. A number of processes such as ‘overshielding’, ‘fossil wind’ and magnetic reconfiguration were suggested as being responsible for the direct penetration of high latitude electric fields to lower latitudes. Detailed low latitude and global numerical models were used to study the characteristics of low latitude and equatorial plasma drifts and their response to changes in the polar cap potential drop or in the high latitude field-aligned currents. These models can reproduce the latitudinal variation of the perturbation electric fields and their diurnal variations, but are still unable to account for several aspects of the experimental data as a result of the complexity of the high latitude and magnetospheric processes involved.

[1]  B. Fejer,et al.  On the height variation of the equatorial F region vertical plasma drifts , 1987 .

[2]  B. Fejer,et al.  An explanation for anomalous equatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field , 1979 .

[3]  R. Woodman,et al.  Equatorial F region vertical plasma drifts during solar maxima , 1989 .

[4]  M. Larsen,et al.  Dynamics of the Arecibo ionosphere: A case study approach , 1985 .

[5]  Arthur D. Richmond,et al.  The ionospheric disturbance dynamo , 1980 .

[6]  Ronald F. Woodman,et al.  Vertical drift velocities and east‐west electric fields at the magnetic equator , 1970 .

[7]  N. Matuura Electric fields deduced from the thermospheric model , 1974 .

[8]  K. Maekawa Global distribution of electric fields and currents in the ionosphere produced by field-aligned currents of magnetospheric origin—I , 1980 .

[9]  C. Meng,et al.  Low latitude negative bays , 1968 .

[10]  Ronald F. Woodman,et al.  F region east‐west drifts at Jicamarca , 1981 .

[11]  N. Maynard,et al.  Average low-latitude meridional electric fields from DE 2 during solar maximum , 1988 .

[12]  F. Mozer,et al.  Electric field mapping in the ionosphere at the equatorial plane , 1970 .

[13]  K. Viswanathan,et al.  Simultaneous electric field changes in the equatorial electrojet in phase with polar cusp latitude changes during a magnetic storm , 1985 .

[14]  J. D. Tarpley,et al.  On the production mechanism of electric currents and fields in the ionosphere , 1976 .

[15]  R. Roble,et al.  Electrodynamic effects of thermospheric winds from the NCAR Thermospheric General Circulation Model , 1987 .

[16]  C. Reddy The equatorial electrojet , 1989 .

[17]  T. Tsuda,et al.  The middle and upper atmosphere radar: First results using a partial system , 1984 .

[18]  M. Yamamoto,et al.  First results obtained with a middle and upper atmosphere (MU) radar , 1986 .

[19]  R. Woodman,et al.  Equatorial electric fields during magnetically disturbed conditions 2. Implications of simultaneous auroral and equatorial measurements , 1979 .

[20]  J. Nisbet,et al.  Currents and electric fields in the ionosphere due to field‐aligned auroral currents , 1978 .

[21]  J. Sastri Response of equatorial electric field to polarity of interplanetary magnetic field , 1989 .

[22]  Ronald F. Woodman,et al.  Dependence of equatorial F region vertical drifts on season and solar cycle , 1979 .

[23]  T. Araki,et al.  Electric conductivity of the ionosphere and nocturnal currents , 1985 .

[24]  R. Spiro,et al.  Quantitative simulation of a magnetospheric substorm. 3. plasmaspheric electric fields and evolution of the plasmapause. Scientific report , 1980 .

[25]  N. Balan,et al.  Vertical plasma drifts in the F region at the magnetic equator , 1989 .

[26]  M. Kelley,et al.  Spectral studies of the sources of ionospheric electric fields , 1987 .

[27]  C. Rino,et al.  Evidence of a velocity shear in bulk plasma motion associated with the post‐sunset rise of the equatorial F‐layer , 1981 .

[28]  R. Wolf Effects of ionospheric conductivity on convective flow of plasma in the magnetosphere , 1970 .

[29]  S. Basu,et al.  Gigahertz scintillations and spaced receiver drift measurements during Project Condor Equatorial F Region Rocket Campaign in Peru , 1986 .

[30]  A. Richmond Ionospheric Wind Dynamo Theory: A Review , 1979 .

[31]  Y. Kamide,et al.  Penetration of high-latitude electric fields into low latitudes , 1981 .

[32]  James C. G. Walker,et al.  Polarization electric fields in the nighttime F layer at Arecibo , 1983 .

[33]  R. Behnke,et al.  Vector measurements of F region ion transport at Arecibo , 1973 .

[34]  A. Hedin,et al.  Interaction of zonal winds with the equatorial midnight pressure bulge in the Earth's thermosphere: Empirical check of momentum balance , 1985 .

[35]  B. Balsley,et al.  A question of DP-2 , 1972 .

[36]  Hiroshi Maeda,et al.  New evidence of a meridional current system in the equatorial ionosphere , 1982 .

[37]  C. J. Zamlutti,et al.  E region ion drifts and winds from incoherent scatter measurements at Arecibo , 1976 .

[38]  M. Blanc Magnetospheric convection effects at mid‐latitudes: 3. Theoretical derivation of the disturbance convection pattern in the plasmasphere , 1983 .

[39]  R. Stening A two‐layer ionospheric dynamo calculation , 1981 .

[40]  T. Hill Solar-Wind Magnetosphere Coupling , 1983 .

[41]  H. Rishbeth The F-layer dynamo , 1971 .

[42]  Mihail Codrescu,et al.  A fully analytic, low‐ and middle‐latitude ionospheric model , 1989 .

[43]  R. Bernard,et al.  Saint‐Santin radar observations of lower thermospheric storms , 1985 .

[44]  D. Anderson,et al.  Ionospheric conditions affecting the evolution of equatorial plasma depletions , 1983 .

[45]  S. Mende,et al.  North‐south aligned equatorial airglow depletions , 1978 .

[46]  H. Kohl F-region dynamics , 1976 .

[47]  J. Meriwether,et al.  Zonal irregularity drifts and neutral winds measured near the magnetic equator in Peru , 1991 .

[48]  L. H. Brace,et al.  Geomagnetic equatorial anomaly in zonal plasma flow , 1987 .

[49]  B. Emery,et al.  Average electric field behavior in the ionosphere above Arecibo , 1987 .

[50]  D. T. Farley,et al.  Interferometer studies of equatorial F region irregularities and drifts , 1981 .

[51]  A. Onwumechilli,et al.  Fluctuations in the geomagnetic horizontal field , 1962 .

[52]  R. W. Spiro,et al.  Penetration of high latitude electric fields effects tolow latitude during Sundial 1984 , 1988 .

[53]  James C. G. Walker,et al.  Comparison of electrical conductivities in the E-AND F-regions of the nocturnal ionosphere , 1977 .

[54]  M. Menvielle,et al.  Global disturbance of the transient magnetic field associated with thermospheric storm winds on March 23, 1979 , 1990 .

[55]  C. Senior,et al.  Low- and mid-latitude ionospheric electric fields during the January 1984 GISMOS campaign , 1990 .

[56]  William R. Coley,et al.  Low‐latitude zonal and vertical ion drifts seen by DE 2 , 1989 .

[57]  W. B. Hanson,et al.  Equatorial fountain effect and dynamo drift signatures from AE-E observations , 1990 .

[58]  B. Balsley Electric fields in the equatorial ionosphere: A review of techniques and measurements , 1973 .

[59]  Tsunomura Satoru,et al.  Numerical analysis of equatorial enhancement of geomagnetic sudden commencement , 1984 .

[60]  T. Araki,et al.  Transient response of uniform ionosphere and preliminary reverse impulse of geomagnetic storm sudden commencement , 1979 .

[61]  Michael C. Kelley,et al.  The earth's ionosphere , 1989 .

[62]  C. Reddy,et al.  Global scale electrodynamic coupling of the auroral and equatorial dynamo regions , 1979 .

[63]  A. Richmond,et al.  Thermospheric response to a magnetic substorm , 1975 .

[64]  R. W. Nopper,et al.  Polar‐equatorial coupling during magnetically active periods , 1978 .

[65]  C. Tepley,et al.  Solar cycle variations in F region electrodynamic drifts at Arecibo , 1990 .

[66]  K. Viswanathan,et al.  Penetration of magnetospheric convective electric field to the equatorial ionosphere during the substorm of March 22, 1979 , 1987 .

[67]  T. Tsuda,et al.  Ionospheric incoherent scatter measurements with the MU radar : Observations of F-region electrodynamics , 1988 .

[68]  Donald T. Farley,et al.  Equatorial F region zonal plasma drifts , 1985 .

[69]  R. Spiro,et al.  Theoretical comments on the nature of the plasmapause , 1986 .

[70]  E. Bonelli,et al.  The prereversal enhancement of the zonal electric field in the equatorial ionosphere , 1986 .

[71]  R. Spiro,et al.  Latitudinal variation of perturbation electric fields during magnetically disturbed periods - 1986 Sundial observations and model results , 1990 .

[72]  M. A. Abdu,et al.  Magnetic declination control of the equatorial F region dynamo electric field development and spread F , 1981 .

[73]  I. J. Kantor,et al.  Plasma bubble irregularity occurrence and zonal velocities under quiet and disturbed conditions, from polarimeter observations , 1984 .

[74]  J.Hanumath Sastry Reversals in Bz component of interplanetary magnetic field and equatorial zonal electric field , 1988 .

[75]  S. Akasofu,et al.  Relationships between the equatorial electrojet and polar magnetic variations , 1973 .

[76]  D. T. Farley,et al.  Equatorial disturbance dynamo electric fields , 1983 .

[77]  C. Reddy The equatorial electrojet: a review of the ionospheric and geomagnetic aspects , 1981 .

[78]  Y. Kamide,et al.  Electromagnetic interactions between high and low latitudes shown by computer simulation movie , 1981 .

[79]  M. Kelley,et al.  On the latitudinal variations of the ionospheric electric field during magnetospheric disturbances , 1983 .

[80]  K. Viswanathan,et al.  Electric fields and currents in the equatorial electrojet deduced from VHF radar observations—II. Characteristics of electric fields on quiet and disturbed days , 1987 .

[81]  P. C. Kendall,et al.  Electrical coupling of the E- and F-regions and its effect on F-region drifts and winds , 1974 .

[82]  J. Murphy,et al.  Implications of the relationship between electromagnetic drift components at mid and low latitudes , 1986 .

[83]  H. G. Mayr,et al.  Tidal decomposition of zonal neutral and ion flows in the earth's upper equatorial thermosphere , 1986 .

[84]  M. Goel,et al.  Postsunset rise of F layer height in the equatorial region and its relation to the F layer dynamo polarization fields , 1990 .

[85]  S. Matsushita IMF and Lower Thermospheric Currents and Motions: A Review , 1979 .

[86]  Jeffrey Baumgardner,et al.  Airglow characteristics of equatorial plasma depletions , 1982 .

[87]  T. Hagfors,et al.  Evidence for the existence of nighttime F-region polarization fields at Arecibo , 1974 .

[88]  Michel Blanc,et al.  On the control of magnetospheric convection by the spatial distribution of ionospheric conductivities , 1982 .