Threshold circuits of bounded depth

[1]  David A. Mix Barrington,et al.  Bounded-Width Polynomial-Size Branching Programs Recognize Exactly Those Languages in NC¹ , 1989, J. Comput. Syst. Sci..

[2]  Georg Schnitger,et al.  Parallel Computation with Threshold Functions , 1986, J. Comput. Syst. Sci..

[3]  James L. McClelland,et al.  James L. McClelland, David Rumelhart and the PDP Research Group, Parallel distributed processing: explorations in the microstructure of cognition . Vol. 1. Foundations . Vol. 2. Psychological and biological models . Cambridge MA: M.I.T. Press, 1987. , 1989, Journal of Child Language.

[4]  Denis Thérien,et al.  Finite monoids and the fine structure of NC1 , 1987, STOC.

[5]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.

[6]  J. Spencer Ten lectures on the probabilistic method , 1987 .

[7]  Johan Håstad,et al.  Almost optimal lower bounds for small depth circuits , 1986, STOC '86.

[8]  David A. Mix Barrington,et al.  Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1986, STOC '86.

[9]  Peter Frankl,et al.  Complexity classes in communication complexity theory , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[10]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[11]  Andrew Chi-Chih Yao,et al.  Separating the Polynomial-Time Hierarchy by Oracles (Preliminary Version) , 1985, FOCS.

[12]  Nicholas Pippenger,et al.  On networks of noisy gates , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[13]  Oded Goldreich,et al.  Unbiased bits from sources of weak randomness and probabilistic communication complexity , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[14]  Béla Bollobás,et al.  Random Graphs , 1985 .

[15]  Ronald Fagin,et al.  Bounded-Depth, Polynomial-Size Circuits for Symmetric Functions , 1985, Theoretical Computer Science.

[16]  A. Yao Separating the polynomial-time hierarchy by oracles , 1985 .

[17]  Michael Ben-Or,et al.  A theorem on probabilistic constant depth Computations , 1984, STOC '84.

[18]  Stephen A. Cook,et al.  Log Depth Circuits for Division and Related Problems , 1984, SIAM J. Comput..

[19]  Uzi Vishkin,et al.  Constant Depth Reducibility , 1984, SIAM J. Comput..

[20]  Yuri Gurevich,et al.  A Logic for Constant-Depth Circuits , 1984, Inf. Control..

[21]  György Turán,et al.  The Critical Complexity of Graph Properties , 1984, Information Processing Letters.

[22]  Neil Immerman Languages which capture complexity classes , 1983, STOC '83.

[23]  Hans Ulrich Simon A Tight Omega(loglog n)-Bound on the Time for Parallel Ram's to Compute Nondegenerated Boolean Functions , 1983, FCT.

[24]  Miklós Ajtai,et al.  ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..

[25]  Sven Skyum A Measure in Which Boolean Negation is Exponentially Powerful , 1983, Inf. Process. Lett..

[26]  Leslie G. Valiant,et al.  A complexity theory based on Boolean algebra , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[27]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[28]  Mike Paterson,et al.  The Depth of All Boolean Functions , 1975, SIAM J. Comput..

[29]  J. Spencer Probabilistic Methods in Combinatorics , 1974 .

[30]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry , 1969 .

[31]  L. Hodes,et al.  Implementing the Algebra of Logic Functions in Terms of Bounded Depth Formulas in the Basis of , 1961 .

[32]  J. von Neumann,et al.  Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components , 1956 .