Persistent Homology — a Survey

Persistent homology is an algebraic tool for measuring topological features of shapes and functions. It casts the multi-scale organization we frequently observe in nature into a mathematical formalism. Here we give a record of the short history of persistent homology and present its basic concepts. Besides the mathematics we focus on algorithms and mention the various connections to applications, including to biomolecules, biological networks, data analysis, and geometric modeling.

[1]  Graeme Segal,et al.  Classifying spaces and spectral sequences , 1968 .

[2]  J. Cerf La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie , 1970 .

[3]  Ravi Kannan,et al.  Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix , 1979, SIAM J. Comput..

[4]  Kenneth S. Brown,et al.  Cohomology of Groups , 1982 .

[5]  David G. Kirkpatrick,et al.  On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.

[6]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[7]  M. L. Connolly Shape complementarity at the hemoglobin α1β1 subunit interface , 1986 .

[8]  M. L. Connolly Shape complementarity at the hemoglobin alpha 1 beta 1 subunit interface. , 1986, Biopolymers.

[9]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[10]  Thomas Martinetz,et al.  Topology representing networks , 1994, Neural Networks.

[11]  Herbert Edelsbrunner,et al.  An incremental algorithm for Betti numbers of simplicial complexes on the 3-sphere , 1995, Comput. Aided Geom. Des..

[12]  Arne Storjohann,et al.  Near optimal algorithms for computing Smith normal forms of integer matrices , 1996, ISSAC '96.

[13]  Marshall W. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[14]  Patrizio Frosini,et al.  Size theory as a topological tool for computer vision , 1999 .

[15]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[16]  Jos B. T. M. Roerdink,et al.  The Watershed Transform: Definitions, Algorithms and Parallelization Strategies , 2000, Fundam. Informaticae.

[17]  M. Ferri,et al.  Size Functions from a Categorical Viewpoint , 2001 .

[18]  Herbert Edelsbrunner,et al.  Hierarchical Morse—Smale Complexes for Piecewise Linear 2-Manifolds , 2003, Discret. Comput. Geom..

[19]  Herbert Edelsbrunner,et al.  Computing linking numbers of a filtration. , 2003 .

[20]  Leonidas J. Guibas,et al.  Persistence barcodes for shapes , 2004, SGP '04.

[21]  Gunnar E. Carlsson,et al.  Topological estimation using witness complexes , 2004, PBG.

[22]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[23]  坂上 貴之 書評 Computational Homology , 2005 .

[24]  David Cohen-Steiner,et al.  Inequalities for the curvature of curves and surfaces , 2005, SCG.

[25]  Herbert Edelsbrunner,et al.  Coarse and Reliable Geometric Alignment for Protein Docking , 2005, Pacific Symposium on Biocomputing.

[26]  Herbert Edelsbrunner Surface tiling with differential topology , 2005, SGP '05.

[27]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[28]  Frédéric Chazal,et al.  Weak feature size and persistent homology: computing homology of solids in Rn from noisy data samples , 2005, SCG.

[29]  David Cohen-Steiner,et al.  Vines and vineyards by updating persistence in linear time , 2006, SCG '06.

[30]  Valerio Pascucci,et al.  Persistence-sensitive simplification functions on 2-manifolds , 2006, SCG '06.

[31]  Herbert Edelsbrunner,et al.  Extreme Elevation on a 2-Manifold , 2006, Discret. Comput. Geom..

[32]  Vin de Silva,et al.  On the Local Behavior of Spaces of Natural Images , 2007, International Journal of Computer Vision.

[33]  Afra Zomorodian,et al.  Localized Homology , 2007, IEEE International Conference on Shape Modeling and Applications 2007 (SMI '07).

[34]  Vin de Silva,et al.  Coverage in sensor networks via persistent homology , 2007 .

[35]  Afra Zomorodian,et al.  The Theory of Multidimensional Persistence , 2007, SCG '07.

[36]  Stephen Smale,et al.  Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..

[37]  Patrizio Frosini,et al.  Natural Pseudo-Distance and Optimal Matching between Reduced Size Functions , 2008, ArXiv.

[38]  David Cohen-Steiner,et al.  Extending Persistence Using Poincaré and Lefschetz Duality , 2009, Found. Comput. Math..

[39]  Herbert Edelsbrunner,et al.  The Persistent Morse Complex Segmentation of a 3-Manifold , 2009, 3DPH.

[40]  Paul Bendich,et al.  Persistent Intersection Homology , 2011, Found. Comput. Math..

[41]  J. Brasselet Intersection Homology , 2020, Singular Intersection Homology.