Preconditioning the Lanczos Algorithm for Sparse Symmetric Eigenvalue Problems
暂无分享,去创建一个
[1] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[2] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[3] O. Axelsson. On the efficiency of a class of a-stable methods , 1974 .
[4] E. Davidson. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .
[5] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[6] J. Meijerink,et al. An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .
[7] J. G. Lewis. Algorithms for sparse matrix eigenvalue problems , 1977 .
[8] A. K. Cline. Several Observations on the Use of Conjugate Gradient Methods , 1978 .
[9] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[10] Axel Ruhe,et al. The spectral transformation Lánczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems , 1980 .
[11] D. Scott. Solving Sparse Symmetric Generalized Eigenvalue Problems without Factorization , 1981 .
[12] D. Scott. The Advantages of Inverted Operators in Rayleigh–Ritz Approximations , 1982 .
[13] Iain S. Duff,et al. Sparse matrix test problems , 1982 .
[14] G. Golub,et al. Block Preconditioning for the Conjugate Gradient Method , 1985 .
[15] R. Morgan,et al. Generalizations of Davidson's method for computing eigenvalues of sparse symmetric matrices , 1986 .
[16] D. Szyld. Criteria for Combining Inverse and Rayleigh Quotient Iteration , 1988 .
[17] R. Morgan. Davidson's method and preconditioning for generalized eigenvalue problems , 1990 .
[18] R. Morgan. Computing Interior Eigenvalues of Large Matrices , 1991 .