Multi-angle implementation of atmospheric correction for MODIS (MAIAC): 3. Atmospheric correction

[1]  Alexei Lyapustin,et al.  Improved cloud and snow screening in MAIAC aerosol retrievals using spectral and spatial analysis , 2012 .

[2]  I. Laszlo,et al.  Improved cloud screening in MAIAC aerosol retrievals using spectral and spatial analysis , 2012 .

[3]  Yujie Wang,et al.  Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables , 2011 .

[4]  Yujie Wang,et al.  Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm , 2011 .

[5]  Nadine Gobron,et al.  Global-Scale Comparison of MISR and MODIS Land Surface Albedos , 2011 .

[6]  Thomas Hilker,et al.  Remote sensing of photosynthetic light-use efficiency across two forested biomes: Spatial scaling , 2010 .

[7]  Alexei Lyapustin,et al.  Assessment of biases in MODIS surface reflectance due to Lambertian approximation , 2010 .

[8]  Thomas Hilker,et al.  An assessment of photosynthetic light use efficiency from space: Modeling the atmospheric and directional impacts on PRI reflectance , 2009 .

[9]  Yujie Wang,et al.  Atmospheric Correction at AERONET Locations: A New Science and Validation Data Set , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Eric Vermote,et al.  Atmospheric correction for the monitoring of land surfaces , 2008 .

[11]  Steven Platnick,et al.  MODIS-Derived Spatially Complete Surface Albedo Products: Spatial and Temporal Pixel Distribution and Zonal Averages , 2008 .

[12]  Yujie Wang,et al.  An automatic cloud mask algorithm based on time series of MODIS measurements , 2008 .

[13]  Alexei Lyapustin,et al.  The time series technique for aerosol retrievals over land from MODIS , 2008 .

[14]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[15]  T. Painter,et al.  Reflectance quantities in optical remote sensing - definitions and case studies , 2006 .

[16]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[17]  D. Roy,et al.  Burned area mapping using multi-temporal moderate spatial resolution data—a bi-directional reflectance model-based expectation approach , 2002 .

[18]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[19]  Y. Knyazikhin,et al.  Green's Function Method for the Radiative Transfer Problem. I. Homogeneous non-Lambertian Surface. , 2001, Applied optics.

[20]  Alan H. Strahler,et al.  An algorithm for the retrieval of albedo from space using semiempirical BRDF models , 2000, IEEE Trans. Geosci. Remote. Sens..

[21]  Wolfgang Lucht,et al.  Theoretical noise sensitivity of BRDF and albedo retrieval from the EOS-MODIS and MISR sensors with respect to angular sampling , 2000 .

[22]  W. Menzel,et al.  Discriminating clear sky from clouds with MODIS , 1998 .

[23]  Robert E. Wolfe,et al.  The MODIS land data storage methodology: level 2 grid , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[24]  E. Vermote,et al.  Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer , 1997 .

[25]  Philip Lewis,et al.  On the information content of multiple view angle (MVA) images , 1997 .

[26]  J. Roujean,et al.  A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data , 1992 .

[27]  Alan H. Strahler,et al.  Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing , 1992, IEEE Trans. Geosci. Remote. Sens..

[28]  Jonathan Mark Welles A bidirectional reflectance model for nonrandom canopies , 1988 .

[29]  A. Strahler,et al.  Geometric-Optical Bidirectional Reflectance Modeling of a Conifer Forest Canopy , 1986, IEEE Transactions on Geoscience and Remote Sensing.