Reproducing kernel technique for high dimensional model representations (HDMR)
暂无分享,去创建一个
Zhenzhou Lu | Xin Xu | Xiaopeng Luo | Zhenzhou Lu | Xin Xu | Xiaopeng Luo | Zhenzhou Lu
[1] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[2] H. Rabitz,et al. High Dimensional Model Representations Generated from Low Dimensional Data Samples. I. mp-Cut-HDMR , 2001 .
[3] Nilay Shah,et al. Metamodelling with independent and dependent inputs , 2013, Comput. Phys. Commun..
[4] Hasan Saygin,et al. A recursive algorithm for finding HDMR terms for sensitivity analysis , 2003 .
[5] J. Dieudonne,et al. Encyclopedic Dictionary of Mathematics , 1979 .
[6] Emanuele Borgonovo,et al. A new uncertainty importance measure , 2007, Reliab. Eng. Syst. Saf..
[7] H. Rabitz,et al. General foundations of high‐dimensional model representations , 1999 .
[8] J. Mercer. Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations , 1909 .
[9] I. J. Schoenberg. Metric spaces and completely monotone functions , 1938 .
[10] L. Hua. Starting with the Unit Circle , 1981 .
[11] Daniel Kressner,et al. A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.
[12] H. Rabitz,et al. High Dimensional Model Representations , 2001 .
[13] Herschel Rabitz,et al. General formulation of HDMR component functions with independent and correlated variables , 2011, Journal of Mathematical Chemistry.
[14] G. Hooker. Generalized Functional ANOVA Diagnostics for High-Dimensional Functions of Dependent Variables , 2007 .
[15] H. Rabitz,et al. Efficient input-output model representations , 1999 .
[16] T. Ishigami,et al. An importance quantification technique in uncertainty analysis for computer models , 1990, [1990] Proceedings. First International Symposium on Uncertainty Modeling and Analysis.
[17] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[18] Herschel Rabitz,et al. Efficient Implementation of High Dimensional Model Representations , 2001 .
[19] Shang-Liang Chen,et al. Orthogonal least squares learning algorithm for radial basis function networks , 1991, IEEE Trans. Neural Networks.
[20] Martin D. Buhmann,et al. Radial Basis Functions: Theory and Implementations: Preface , 2003 .
[21] Ilya M. Sobol,et al. Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .
[22] Qiao Liu,et al. A new computational method of a moment-independent uncertainty importance measure , 2009, Reliab. Eng. Syst. Saf..
[23] Peter C. Young,et al. State Dependent Parameter metamodelling and sensitivity analysis , 2007, Comput. Phys. Commun..
[24] A. Saltelli,et al. A quantitative model-independent method for global sensitivity analysis of model output , 1999 .
[25] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[26] Guangyao Li,et al. High dimensional model representation (HDMR) coupled intelligent sampling strategy for nonlinear problems , 2012, Comput. Phys. Commun..
[27] Koichi Yamashita,et al. Fitting sparse multidimensional data with low-dimensional terms , 2009, Comput. Phys. Commun..
[28] Jooyoung Park,et al. Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.
[29] Robert Schaback,et al. Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..
[30] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[31] Nii O. Attoh-Okine,et al. Fourth International Symposium on Uncertainty Modeling and Analysis. ISUMA 2003 , 2003, Fourth International Symposium on Uncertainty Modeling and Analysis, 2003. ISUMA 2003..
[32] B. Khoromskij. Tensors-structured Numerical Methods in Scientific Computing: Survey on Recent Advances , 2012 .
[33] W. Press,et al. Numerical Recipes: The Art of Scientific Computing , 1987 .
[34] J. Friedman,et al. Projection Pursuit Regression , 1981 .
[35] G. Arfken. Mathematical Methods for Physicists , 1967 .
[36] Nello Cristianini,et al. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .
[37] Frances Y. Kuo,et al. The smoothing effect of the ANOVA decomposition , 2010, J. Complex..
[38] H. Rabitz,et al. Reproducing kernel Hilbert space interpolation methods as a paradigm of high dimensional model representations: Application to multidimensional potential energy surface construction , 2003 .