Reproducing kernel technique for high dimensional model representations (HDMR)

a b s t r a c t An easy and effective approach is proposed to estimate the arbitrary l order HDMR approximations for complex high dimensional physical systems on the basis of the reproducing kernel Hilbert space (RKHS). With the help of Fourier transform and Dirac delta function, the corresponding explicit reproducing kernel K(x, y) is first constructed to approximate the HDMR approximations by a linear combination of K(x, y). Then the computation of the l order HDMR approximations can be given in the form of solving a system of linear equations. It can be strictly proved that this linear system is just another equivalent definition of the lth order HDMR approximations by using the corresponding reproducing kernel. And the numerical examples provide a practical evidence for the rationality and effectiveness of the proposed approach.

[1]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[2]  H. Rabitz,et al.  High Dimensional Model Representations Generated from Low Dimensional Data Samples. I. mp-Cut-HDMR , 2001 .

[3]  Nilay Shah,et al.  Metamodelling with independent and dependent inputs , 2013, Comput. Phys. Commun..

[4]  Hasan Saygin,et al.  A recursive algorithm for finding HDMR terms for sensitivity analysis , 2003 .

[5]  J. Dieudonne,et al.  Encyclopedic Dictionary of Mathematics , 1979 .

[6]  Emanuele Borgonovo,et al.  A new uncertainty importance measure , 2007, Reliab. Eng. Syst. Saf..

[7]  H. Rabitz,et al.  General foundations of high‐dimensional model representations , 1999 .

[8]  J. Mercer Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations , 1909 .

[9]  I. J. Schoenberg Metric spaces and completely monotone functions , 1938 .

[10]  L. Hua Starting with the Unit Circle , 1981 .

[11]  Daniel Kressner,et al.  A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.

[12]  H. Rabitz,et al.  High Dimensional Model Representations , 2001 .

[13]  Herschel Rabitz,et al.  General formulation of HDMR component functions with independent and correlated variables , 2011, Journal of Mathematical Chemistry.

[14]  G. Hooker Generalized Functional ANOVA Diagnostics for High-Dimensional Functions of Dependent Variables , 2007 .

[15]  H. Rabitz,et al.  Efficient input-output model representations , 1999 .

[16]  T. Ishigami,et al.  An importance quantification technique in uncertainty analysis for computer models , 1990, [1990] Proceedings. First International Symposium on Uncertainty Modeling and Analysis.

[17]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[18]  Herschel Rabitz,et al.  Efficient Implementation of High Dimensional Model Representations , 2001 .

[19]  Shang-Liang Chen,et al.  Orthogonal least squares learning algorithm for radial basis function networks , 1991, IEEE Trans. Neural Networks.

[20]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[21]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[22]  Qiao Liu,et al.  A new computational method of a moment-independent uncertainty importance measure , 2009, Reliab. Eng. Syst. Saf..

[23]  Peter C. Young,et al.  State Dependent Parameter metamodelling and sensitivity analysis , 2007, Comput. Phys. Commun..

[24]  A. Saltelli,et al.  A quantitative model-independent method for global sensitivity analysis of model output , 1999 .

[25]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[26]  Guangyao Li,et al.  High dimensional model representation (HDMR) coupled intelligent sampling strategy for nonlinear problems , 2012, Comput. Phys. Commun..

[27]  Koichi Yamashita,et al.  Fitting sparse multidimensional data with low-dimensional terms , 2009, Comput. Phys. Commun..

[28]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[29]  Robert Schaback,et al.  Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..

[30]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[31]  Nii O. Attoh-Okine,et al.  Fourth International Symposium on Uncertainty Modeling and Analysis. ISUMA 2003 , 2003, Fourth International Symposium on Uncertainty Modeling and Analysis, 2003. ISUMA 2003..

[32]  B. Khoromskij Tensors-structured Numerical Methods in Scientific Computing: Survey on Recent Advances , 2012 .

[33]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[34]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[35]  G. Arfken Mathematical Methods for Physicists , 1967 .

[36]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[37]  Frances Y. Kuo,et al.  The smoothing effect of the ANOVA decomposition , 2010, J. Complex..

[38]  H. Rabitz,et al.  Reproducing kernel Hilbert space interpolation methods as a paradigm of high dimensional model representations: Application to multidimensional potential energy surface construction , 2003 .