The Delta Conjecture

We conjecture two combinatorial interpretations for the symmetric function $\Delta_{e_k} e_n$, where $\Delta_f$ is an eigenoperator for the modified Macdonald polynomials defined by Bergeron, Garsia, Haiman, and Tesler. Both interpretations can be seen as generalizations of the Shuffle Conjecture of Haglund, Haiman, Remmel, Loehr, and Ulyanov, which was proved recently by Carlsson and Mellit. We show how previous work of the third author on Tesler matrices and ordered set partitions can be used to verify several cases of our conjectures. Furthermore, we use a reciprocity identity and LLT polynomials to prove another case. Finally, we show how our conjectures inspire 4-variable generalizations of the Catalan numbers, extending work of Garsia, Haiman, and the first author.

[2]  Adriano M. Garsia,et al.  A new plethystic symmetric function operator and the rational compositional shuffle conjecture at t = 1/q , 2017, J. Comb. Theory, Ser. A.

[3]  Gregory S. Warrington,et al.  Square q, t-lattice paths and ∇(pn) , 2007 .

[4]  J. B. Remmel,et al.  A combinatorial formula for the character of the diagonal coinvariants , 2003, math/0310424.

[5]  Adriano M. Garsia,et al.  A proof of the q, t-Catalan positivity conjecture , 2002, Discret. Math..

[6]  Mark Haiman,et al.  Vanishing theorems and character formulas for the Hilbert scheme of points in the plane , 2001, math/0201148.

[7]  Guoce Xin,et al.  Compositional (km,kn)-Shuffle Conjectures , 2014, 1404.4616.

[8]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[9]  R. Stanley,et al.  Enumerative Combinatorics: Index , 1999 .

[10]  A. Wilson A weighted sum over generalized Tesler matrices , 2015, 1510.02684.

[11]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[12]  Jennifer Morse,et al.  A Compositional Shuffle Conjecture Specifying Touch Points of the Dyck Path , 2010, Canadian Journal of Mathematics.

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Marc A. A. van Leeuwen,et al.  Some Bijective Correspondences Involving Domino Tableaux , 1999, Electron. J. Comb..

[15]  Bernard Leclerc,et al.  Splitting the Square of a Schur Function into its Symmetric and Antisymmetric Parts , 1995 .

[16]  James Haglund Conjectured statistics for the q,t-Catalan numbers , 2003 .

[17]  James Haglund,et al.  The q, t-Catalan numbers and the space of diagonal harmonics : with an appendix on the combinatorics of Macdonald polynomials , 2007 .

[18]  Gregory S. Warrington,et al.  Rational Parking Functions and Catalan Numbers , 2014, 1403.1845.

[19]  Andrew Timothy Wilson,et al.  An Extension of MacMahon's Equidistribution Theorem to Ordered Multiset Partitions , 2014, Electron. J. Comb..

[20]  Nicholas A. Loehr,et al.  A combinatorial formula for Macdonald polynomials , 2005 .

[21]  Erik Carlsson,et al.  A proof of the shuffle conjecture , 2015, 1508.06239.

[22]  James Haglund,et al.  A Schröder Generalization of Haglund's Statistic on Catalan Paths , 2003, Electron. J. Comb..

[23]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[24]  J. Haglund A proof of the q,t-Schröder conjecture , 2004 .

[25]  Alain Lascoux,et al.  Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties , 1995 .

[26]  Bruce E. Sagan,et al.  Congruence properties of q-analogs , 1992 .

[27]  Jeffrey B. Remmel,et al.  An extension of MacMahon's equidistribution theorem to ordered set partitions , 2014, J. Comb. Theory, Ser. A.

[28]  Gregory S. Warrington,et al.  Square $\boldsymbol{q,t}$-lattice paths and $\boldsymbol{\nabla(p_n)}$ , 2006 .

[29]  A. Wilson Generalized Shuffle Conjectures for the Garsia-Haiman Delta Operator , 2015 .