The Delta Conjecture
暂无分享,去创建一个
[2] Adriano M. Garsia,et al. A new plethystic symmetric function operator and the rational compositional shuffle conjecture at t = 1/q , 2017, J. Comb. Theory, Ser. A.
[3] Gregory S. Warrington,et al. Square q, t-lattice paths and ∇(pn) , 2007 .
[4] J. B. Remmel,et al. A combinatorial formula for the character of the diagonal coinvariants , 2003, math/0310424.
[5] Adriano M. Garsia,et al. A proof of the q, t-Catalan positivity conjecture , 2002, Discret. Math..
[6] Mark Haiman,et al. Vanishing theorems and character formulas for the Hilbert scheme of points in the plane , 2001, math/0201148.
[7] Guoce Xin,et al. Compositional (km,kn)-Shuffle Conjectures , 2014, 1404.4616.
[8] R. Stanley. Enumerative Combinatorics: Volume 1 , 2011 .
[9] R. Stanley,et al. Enumerative Combinatorics: Index , 1999 .
[10] A. Wilson. A weighted sum over generalized Tesler matrices , 2015, 1510.02684.
[11] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[12] Jennifer Morse,et al. A Compositional Shuffle Conjecture Specifying Touch Points of the Dyck Path , 2010, Canadian Journal of Mathematics.
[13] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[14] Marc A. A. van Leeuwen,et al. Some Bijective Correspondences Involving Domino Tableaux , 1999, Electron. J. Comb..
[15] Bernard Leclerc,et al. Splitting the Square of a Schur Function into its Symmetric and Antisymmetric Parts , 1995 .
[16] James Haglund. Conjectured statistics for the q,t-Catalan numbers , 2003 .
[17] James Haglund,et al. The q, t-Catalan numbers and the space of diagonal harmonics : with an appendix on the combinatorics of Macdonald polynomials , 2007 .
[18] Gregory S. Warrington,et al. Rational Parking Functions and Catalan Numbers , 2014, 1403.1845.
[19] Andrew Timothy Wilson,et al. An Extension of MacMahon's Equidistribution Theorem to Ordered Multiset Partitions , 2014, Electron. J. Comb..
[20] Nicholas A. Loehr,et al. A combinatorial formula for Macdonald polynomials , 2005 .
[21] Erik Carlsson,et al. A proof of the shuffle conjecture , 2015, 1508.06239.
[22] James Haglund,et al. A Schröder Generalization of Haglund's Statistic on Catalan Paths , 2003, Electron. J. Comb..
[23] Charalambos A. Charalambides,et al. Enumerative combinatorics , 2018, SIGA.
[24] J. Haglund. A proof of the q,t-Schröder conjecture , 2004 .
[25] Alain Lascoux,et al. Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties , 1995 .
[26] Bruce E. Sagan,et al. Congruence properties of q-analogs , 1992 .
[27] Jeffrey B. Remmel,et al. An extension of MacMahon's equidistribution theorem to ordered set partitions , 2014, J. Comb. Theory, Ser. A.
[28] Gregory S. Warrington,et al. Square $\boldsymbol{q,t}$-lattice paths and $\boldsymbol{\nabla(p_n)}$ , 2006 .
[29] A. Wilson. Generalized Shuffle Conjectures for the Garsia-Haiman Delta Operator , 2015 .