Fictitious Domain Methods for Viscous Flow Simulation

Abstract : We discuss the fictitious domain solution of the Navier-Stokes equations modelling unsteady incompressible viscous flow. The method is based on a Lagrange multiplier treatment of the boundary conditions to be satisfied and is particularly well suited to the treatment of no-slip boundary conditions. This approach allows the use of structured meshes and fast specialized solvers for problems on complicated geometries. Another interesting feature of the fictitious domain approach is that it allows the solution of optimal shape problems without regriding. The resulting methodology is applied to the solution of flow problems including external viscous flow past oscillating rigid body and vortex dynamics of two-dimensional flow modelled by the incompressible Navier-Stokes equations and then to an optimal shape problem for Stokes and Navier-Stokes flows.

[1]  B. L. Buzbee,et al.  The direct solution of the discrete Poisson equation on irregular regions , 1970 .

[2]  J. Cea Optimisation : théorie et algorithmes , 1971 .

[3]  D. Begis,et al.  Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal. Méthodes de résolution des problèmes approchés , 1975 .

[4]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[5]  R. Glowinski,et al.  Viscous Flow Simulation by Finite Element Methods and Related Numerical Techniques , 1985 .

[6]  J. Haslinger,et al.  Finite Element Approximation for Optimal Shape Design: Theory and Applications , 1989 .

[7]  Christoph Börgers,et al.  Domain imbedding methods for the Stokes equations , 1990 .

[8]  D. P. Young,et al.  A locally refined rectangular grid finite element method: application to computational fluid dynamics and computational physics , 1990 .

[9]  J. Dennis,et al.  Direct Search Methods on Parallel Machines , 1991 .

[10]  R. Glowinski,et al.  A Fictitious Domain Method for the Incompressible Navier-Stokes Equations , 1991 .

[11]  Emanuele Caglioti,et al.  A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description , 1992 .

[12]  Jaroslav Haslinger,et al.  Imbedding/Control Approach for Solving Optimal Shape Design Problems , 1993 .

[13]  Michal Kočvara,et al.  Control/fictitious domain method for solving optimal shape design problems , 1993 .

[14]  R. Glowinski,et al.  Incompressible Computational Fluid Dynamics: On Some Finite Element Methods for the Numerical Simulation of Incompressible Viscous Flow , 1993 .

[15]  R. Glowinski,et al.  A fictitious domain method for external incompressible viscous flow modeled by Navier-Stokes equations , 1994 .

[16]  R. Glowinski,et al.  A fictitious domain method for Dirichlet problem and applications , 1994 .

[17]  Anders Klarbring,et al.  Fictitious domain/mixed finite element approach for a class of optimal shape design problems , 1995 .

[18]  Jacques Periaux,et al.  A Lagrange multiplier/fictitious domain method for the Dirichlet problem — Generalization to some flow problems , 1995 .