A fast reconstruction algorithm for deterministic compressive sensing using second order reed-muller codes

This paper proposes a deterministic compressed sensing matrix that comes by design with a very fast reconstruction algorithm, in the sense that its complexity depends only on the number of measurements n and not on the signal dimension N. The matrix construction is based on the second order Reed- Muller codes and associated functions. This matrix does not have RIP uniformly with respect to all k-sparse vectors, but it acts as a near isometry on k-sparse vectors with very high probability.

[1]  Piotr Indyk,et al.  Sparse Recovery Using Sparse Random Matrices , 2010, LATIN.

[2]  R. DeVore,et al.  Compressed sensing and best k-term approximation , 2008 .

[3]  Stephen J. Wright,et al.  Toeplitz-Structured Compressed Sensing Matrices , 2007, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing.

[4]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[5]  A. Robert Calderbank,et al.  The Finite Heisenberg-Weyl Groups in Radar and Communications , 2006, EURASIP J. Adv. Signal Process..

[6]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[7]  Anthony M. Kerdock,et al.  A Class of Low-Rate Nonlinear Binary Codes , 1972, Inf. Control..

[8]  David L. Donoho,et al.  High-Dimensional Centrally Symmetric Polytopes with Neighborliness Proportional to Dimension , 2006, Discret. Comput. Geom..

[9]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Richard G. Baraniuk,et al.  Random Filters for Compressive Sampling and Reconstruction , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[11]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[12]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[13]  Richard G. Baraniuk,et al.  An Information-Theoretic Approach to Distributed Compressed Sensing ∗ , 2005 .

[14]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[15]  Ronald A. DeVore,et al.  Deterministic constructions of compressed sensing matrices , 2007, J. Complex..

[16]  Jean-Marie Goethals,et al.  Alternating Bilinear Forms over GF(q) , 1975, J. Comb. Theory A.

[17]  D. Donoho,et al.  Neighborliness of randomly projected simplices in high dimensions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  N. J. A. Sloane,et al.  Weight enumerator for second-order Reed-Muller codes , 1970, IEEE Trans. Inf. Theory.

[19]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[20]  Piotr Indyk Explicit constructions for compressed sensing of sparse signals , 2008, SODA '08.