Modelling of repairable systems with various degrees of repair

The availability of a stochastic repairable system depends on the failure behaviour and on repair strategies. In this paper, we deal with a general repair model for a system using auxiliary counting processes and corresponding intensities which include various degrees of repair (between minimal repair and perfect repair). For determining the model parameters we need estimators depending on failure times and repair times: maximum likelihood (ML) estimator and Bayes estimators are considered. Special results are obtained by the use of Weibull-type intensities and random observation times.

[1]  Moshe Shaked,et al.  Multivariate Imperfect Repair , 1986, Oper. Res..

[2]  J. Franz Niveaudurchagangszeiten zur charakterisierung sequentieller schätzverfahren , 1977 .

[3]  H. Pruscha PARAMETRIC INFERENCE IN MARKOV BRANCHING PROCESSES WITH TIME-DEPENDENT RANDOM IMMIGRATION RATE , 1985 .

[4]  N. Hjort Bayes estimators and asymptotic efficiency in parametric counting process models , 1986 .

[5]  L. Yeh A note on the optimal replacement problem , 1988, Advances in Applied Probability.

[6]  M. Kijima SOME RESULTS FOR REPAIRABLE SYSTEMS WITH GENERAL REPAIR , 1989 .

[7]  P. Brémaud Point Processes and Queues , 1981 .

[8]  Niels Keiding,et al.  Statistical Models Based on Counting Processes , 1993 .

[9]  Wolfgang Stadje,et al.  Optimal Maintenance Strategies for Repairable Systems with General Degree of Repair , 1991 .

[10]  J. Franz,et al.  Admissible estimators in sequential plans for exponential-type processes , 1990 .

[11]  T. H. Savits,et al.  Age Dependent Minimal Repair. , 1985 .

[12]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Statistics of random processes , 1977 .

[13]  Myles Hollander,et al.  Nonparametric Methods for Imperfect Repair Models , 1992 .

[14]  G. Härtler,et al.  Statistische Methode für die Zuverlässigkeitsanalyse , 1983 .

[15]  L. J. Bain,et al.  On the Mean Time between Failures for Repairable Systems , 1986, IEEE Transactions on Reliability.

[16]  J. Jacod Multivariate point processes: predictable projection, Radon-Nikodym derivatives, representation of martingales , 1975 .

[17]  Ả. Svensson,et al.  Asymptotic estimation in counting processes with parametric intensities based on one realization , 1990 .

[18]  M. E. Ghitany,et al.  Asymptotic Results for Exponential Mixture Models with Long-Term Survivors , 1992 .

[19]  P. A. W. Lewis,et al.  Multivariate point processes , 2018, Point Processes.