A multi-object spectral imaging instrument

We have developed a snapshot spectral imaging system which fits onto the side camera port of a commercial inverted microscope. The system provides spectra, in real time, from multiple points randomly selected on the microscope image. Light from the selected points in the sample is directed from the side port imaging arm using a digital micromirror device to a spectrometer arm based on a dispersing prism and CCD camera. A multi-line laser source is used to calibrate the pixel positions on the CCD for wavelength. A CMOS camera on the front port of the microscope allows the full image of the sample to be displayed and can also be used for particle tracking, providing spectra of multiple particles moving in the sample. We demonstrate the system by recording the spectra of multiple fluorescent beads in aqueous solution and from multiple points along a microscope sample channel containing a mixture of red and blue dye.

[1]  A. Radko,et al.  Multi-object spectrometer with micromirror array , 2010 .

[2]  Miles J. Padgett,et al.  Expanding the toolbox for nanoparticle trapping and spectroscopy with holographic optical tweezers , 2012 .

[3]  Liang Gao,et al.  Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy. , 2009, Optics express.

[4]  Daniel W. Wilson,et al.  Snapshot hyperspectral imaging in ophthalmology. , 2007, Journal of biomedical optics.

[5]  G Muyo,et al.  Spectral imaging of the retina , 2011, Eye.

[6]  Eustace L. Dereniak,et al.  Snapshot hyperspectral imaging , 2001 .

[7]  Atsushi Miyawaki,et al.  Whole-field fluorescence microscope with digital micromirror device: imaging of biological samples. , 2003, Applied optics.

[8]  Nahum Gat,et al.  Imaging spectroscopy using tunable filters: a review , 2000, SPIE Defense + Commercial Sensing.

[9]  Paul Geladi,et al.  Techniques and applications of hyperspectral image analysis , 2007 .

[10]  Terrence S. Lomheim,et al.  Infrared hyperspectral imaging Fourier transform and dispersive spectrometers: comparison of signal-to-noise-based performance , 2002, SPIE Optics + Photonics.

[11]  Andrew R. Harvey,et al.  Technology options for imaging spectrometry , 2000, SPIE Optics + Photonics.

[12]  Genrikh R. Ivanitskii,et al.  Long-term dynamic structural memory in water: can it exist? , 2014 .

[13]  M. Descour,et al.  Computed-tomography imaging spectrometer: experimental calibration and reconstruction results. , 1995, Applied optics.

[14]  Zoran Ninkov,et al.  RITMOS: a micromirror-based multi-object spectrometer , 2004, SPIE Astronomical Telescopes + Instrumentation.

[15]  Neil Barakat,et al.  Applications of digital micro-mirror devices to digital optical microscope dynamic range enhancement. , 2009, Optics express.

[16]  Andrew R. Harvey,et al.  Real-time imaging with a hyperspectral fovea , 2005 .

[17]  Andrew Harvey,et al.  Birefringent Fourier-transform imaging spectrometer. , 2004, Optics express.

[18]  Alistair Gorman,et al.  Generalization of the Lyot filter and its application to snapshot spectral imaging. , 2010, Optics express.

[19]  Liang Gao,et al.  Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems , 2012, Optical engineering.

[20]  Liang Gao,et al.  Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy , 2010, Optics express.

[21]  A. Barducci,et al.  Theoretical aspects of Fourier Transform Spectrometry and common path triangular interferometers. , 2010, Optics express.

[22]  Daniel W. Wilson,et al.  Spatial-spectral modulating snapshot hyperspectral imager. , 2006, Applied optics.

[23]  Jeffrey B. Sampsell,et al.  Digital micromirror device and its application to projection displays , 1994 .

[24]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[25]  G. McConnell,et al.  Fast wavelength multiplexing of a white-light supercontinuum using a digital micromirror device for improved three-dimensional fluorescence microscopy , 2006 .

[26]  E. Ring,et al.  Infrared thermal imaging in medicine , 2012, Physiological measurement.

[27]  R Richards-Kortum,et al.  Fiber-optic confocal microscopy using a spatial light modulator. , 2000, Optics letters.