On Chaos in the Fractional-Order Discrete-Time Unified System and Its Control Synchronization

In this paper, we propose a fractional map based on the integer-order unified map. The chaotic behavior of the proposed map is analyzed by means of bifurcations plots, and experimental bounds are placed on the parameters and fractional order. Different control laws are proposed to force the states to zero asymptotically and to achieve the complete synchronization of a pair of fractional unified maps with identical or nonidentical parameters. Numerical results are used throughout the paper to illustrate the findings.

[1]  Dumitru Baleanu,et al.  Discrete chaos in fractional delayed logistic maps , 2015 .

[2]  Leon O. Chua,et al.  Conditions for impulsive Synchronization of Chaotic and hyperchaotic Systems , 2001, Int. J. Bifurc. Chaos.

[3]  Zeraoulia Elhadj,et al.  A Unified Piecewise Smooth Chaotic Mapping that Contains the Hénon and the Lozi Systems , 2007 .

[4]  D. Hitzl,et al.  An exploration of the Hénon quadratic map , 1985 .

[5]  GIUSEPPE GRASSI,et al.  A general unified approach to chaos synchronization in continuous-time systems (with or without equilibrium points) as well as in discrete-time systems , 2018 .

[6]  D. Baleanu,et al.  Chaos synchronization of fractional chaotic maps based on the stability condition , 2016 .

[7]  Li Liu,et al.  Chaos Synchronization of Nonlinear Fractional Discrete Dynamical Systems via Linear Control , 2017, Entropy.

[8]  R. Lozi UN ATTRACTEUR ÉTRANGE (?) DU TYPE ATTRACTEUR DE HÉNON , 1978 .

[9]  Adel Ouannas,et al.  A new approach to study the coexistence of some synchronization types between chaotic maps with different dimensions , 2016 .

[10]  Thabet Abdeljawad,et al.  On Riemann and Caputo fractional differences , 2011, Comput. Math. Appl..

[11]  Adel Ouannas,et al.  Generalized synchronization of different dimensional chaotic dynamical systems in discrete time , 2015 .

[12]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[13]  Ahmad Taher Azar,et al.  A new type of hybrid synchronization between arbitrary hyperchaotic maps , 2016, International Journal of Machine Learning and Cybernetics.

[14]  Alexander L. Fradkov,et al.  Control of chaos: methods and applications in mechanics , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  S. Boccaletti,et al.  The control of chaos: theory and applications , 2000 .

[16]  Adel Ouannas,et al.  A New Q–S Synchronization Results for Discrete Chaotic Systems , 2019 .

[17]  Baier,et al.  Design of hyperchaotic flows. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  M. Mossa Al-sawalha,et al.  Synchronization of Chaotic Dynamical Systems in Discrete-Time , 2016, Advances in Chaos Theory and Intelligent Control.

[19]  Qun Ding,et al.  A New Two-Dimensional Map with Hidden Attractors , 2018, Entropy.

[20]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[21]  A. Peterson,et al.  Discrete Fractional Calculus , 2016 .

[22]  Adel Ouannas,et al.  A New Generalized-Type of Synchronization for Discrete-Time Chaotic Dynamical Systems , 2015 .

[23]  Paul W. Eloe,et al.  DISCRETE FRACTIONAL CALCULUS WITH THE NABLA OPERATOR , 2009 .

[24]  K. Stefanski Modelling chaos and hyperchaos with 3-D maps , 1998 .

[25]  R. Agarwal,et al.  Fractional Sums and Differences with Binomial Coefficients , 2013 .

[26]  Ahmed Alsaedi,et al.  Universal chaos synchronization control laws for general quadratic discrete systems , 2017 .

[27]  Dumitru Baleanu,et al.  Stability analysis of Caputo-like discrete fractional systems , 2017, Commun. Nonlinear Sci. Numer. Simul..

[28]  Adel Ouannas,et al.  Inverse full state hybrid projective synchronization for chaotic maps with different dimensions , 2016 .

[29]  Adel Ouannas,et al.  A New Approach To Synchronize Different Dimensional Chaotic Maps Using Two Scaling Matrices , .

[30]  B. Kuttner,et al.  On Differences of Fractional Order , 1957 .

[31]  Yasser Shekofteh,et al.  A New Chaotic System with a Self-Excited Attractor: Entropy Measurement, Signal Encryption, and Parameter Estimation , 2018, Entropy.

[32]  B. Sharma,et al.  Investigation of chaos in fractional order generalized hyperchaotic Henon map , 2017 .

[33]  Adel Ouannas,et al.  New type of chaos synchronization in discrete-time systems: the F-M synchronization , 2018 .

[34]  S M Pincus,et al.  Approximate entropy as a measure of system complexity. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[35]  D. Baleanu,et al.  Discrete fractional logistic map and its chaos , 2014 .

[36]  Dumitru Baleanu,et al.  Chaos synchronization of the discrete fractional logistic map , 2014, Signal Process..

[37]  T. Hu Discrete Chaos in Fractional Henon Map , 2014 .

[38]  George A. Anastassiou,et al.  Principles of delta fractional calculus on time scales and inequalities , 2010, Math. Comput. Model..

[39]  S. Pincus Approximate entropy (ApEn) as a complexity measure. , 1995, Chaos.