Explicit arithmetic intersection theory and computation of Néron-Tate heights

We describe a general algorithm for computing intersection pairings on arithmetic surfaces. We have implemented our algorithm for curves over Q, and we show how to use it to compute regulators for a number of Jacobians of smooth plane quartics, and to numerically verify the conjecture of Birch and Swinnerton-Dyer for the Jacobian of the split Cartan curve of level 13, up to squares.

[1]  Jennifer S. Balakrishnan,et al.  Computing local p-adic height pairings on hyperelliptic curves , 2010, 1010.6009.

[2]  J. S. Muller,et al.  Computing canonical heights on elliptic curves in quasi-linear time , 2015, LMS J. Comput. Math..

[3]  Computing Néron–Tate heights of points on hyperelliptic Jacobians , 2010, 1004.4503.

[4]  Christian Neurohr,et al.  Computing period matrices and the Abel-Jacobi map of superelliptic curves , 2017, Math. Comput..

[5]  A. Neron,et al.  Quasi-fonctions et Hauteurs sur les Varietes Abeliennes , 1965 .

[6]  B. Poonen,et al.  GENERALIZED EXPLICIT DESCENT AND ITS APPLICATION TO CURVES OF GENUS 3 , 2012, Forum of Mathematics, Sigma.

[7]  Benedict H. Gross,et al.  Local Heights on Curves , 1986 .

[8]  J. S. Muller,et al.  Canonical heights on genus-2 Jacobians , 2016, 1603.00640.

[9]  Nigel P. Smart,et al.  Canonical heights on the jacobians of curves of genus 2 and the infinite descent , 1997 .

[10]  Fredrik Johansson,et al.  Arb: Efficient Arbitrary-Precision Midpoint-Radius Interval Arithmetic , 2016, IEEE Transactions on Computers.

[11]  D. Holmes An Arakelov-Theoretic Approach to Na\"ive Heights on Hyperelliptic Jacobians , 2012, 1207.5948.

[12]  Christian Neurohr Efficient integration on Riemann surfaces & applications , 2018 .

[13]  M. Stoll An explicit theory of heights for hyperelliptic Jacobians of genus three , 2017, 1701.00772.

[14]  Jan Steffen Müller,et al.  Computing canonical heights using arithmetic intersection theory , 2011, Math. Comput..

[15]  B. Baran An exceptional isomorphism between modular curves of level 13 , 2014 .

[16]  S. Lang Fundamentals of Diophantine Geometry , 1983 .

[17]  S. Siksek Infinite Descent on Elliptic Curves , 1995 .

[18]  Raymond van Bommel Numerical Verification of the Birch and Swinnerton-Dyer Conjecture for Hyperelliptic Curves of Higher Genus over ℚ up to Squares , 2017, Experimental Mathematics.

[19]  S. Lang Introduction to Arakelov Theory , 1988 .

[20]  D. Mumford Tata Lectures on Theta I , 1982 .

[21]  An exceptional isomorphism between level 13 modular curves via Torelli’s Theorem , 2014 .

[22]  Qing Liu,et al.  Algebraic Geometry and Arithmetic Curves , 2002 .

[23]  Michael Stoll,et al.  On the height constant for curves of genus two, II , 1999 .

[24]  Mathematische,et al.  Heegner Points and Derivatives of L-Series. II , 2005 .

[25]  Bjorn Poonen,et al.  Explicit descent for Jacobians of cyclic coevers of the projective line. , 1997 .

[26]  Michael Stoll,et al.  Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves , 2001, Math. Comput..

[27]  Bjorn Poonen,et al.  The Cassels-Tate pairing on polarized abelian varieties , 1999 .

[28]  Joseph H. Silverman,et al.  Computing heights on elliptic curves , 1988 .

[29]  Florian Hess,et al.  Computing Riemann-Roch Spaces in Algebraic Function Fields and Related Topics , 2002, J. Symb. Comput..

[30]  P. Hriljac HEIGHTS AND ARAKELOV'S INTERSECTION THEORY , 1985 .

[31]  Gerd Faltings,et al.  Calculus on arithmetic surfaces , 1984 .

[32]  Jennifer S. Balakrishnan,et al.  Explicit Chabauty—Kim for the split Cartan modular curve of level 13 , 2017, Annals of Mathematics.