Explicit arithmetic intersection theory and computation of Néron-Tate heights
暂无分享,去创建一个
David Holmes | J. Steffen Müller | Raymond van Bommel | J. Müller | D. Holmes | R. V. Bommel | David Holmes | J. S. Müller
[1] Jennifer S. Balakrishnan,et al. Computing local p-adic height pairings on hyperelliptic curves , 2010, 1010.6009.
[2] J. S. Muller,et al. Computing canonical heights on elliptic curves in quasi-linear time , 2015, LMS J. Comput. Math..
[3] Computing Néron–Tate heights of points on hyperelliptic Jacobians , 2010, 1004.4503.
[4] Christian Neurohr,et al. Computing period matrices and the Abel-Jacobi map of superelliptic curves , 2017, Math. Comput..
[5] A. Neron,et al. Quasi-fonctions et Hauteurs sur les Varietes Abeliennes , 1965 .
[6] B. Poonen,et al. GENERALIZED EXPLICIT DESCENT AND ITS APPLICATION TO CURVES OF GENUS 3 , 2012, Forum of Mathematics, Sigma.
[7] Benedict H. Gross,et al. Local Heights on Curves , 1986 .
[8] J. S. Muller,et al. Canonical heights on genus-2 Jacobians , 2016, 1603.00640.
[9] Nigel P. Smart,et al. Canonical heights on the jacobians of curves of genus 2 and the infinite descent , 1997 .
[10] Fredrik Johansson,et al. Arb: Efficient Arbitrary-Precision Midpoint-Radius Interval Arithmetic , 2016, IEEE Transactions on Computers.
[11] D. Holmes. An Arakelov-Theoretic Approach to Na\"ive Heights on Hyperelliptic Jacobians , 2012, 1207.5948.
[12] Christian Neurohr. Efficient integration on Riemann surfaces & applications , 2018 .
[13] M. Stoll. An explicit theory of heights for hyperelliptic Jacobians of genus three , 2017, 1701.00772.
[14] Jan Steffen Müller,et al. Computing canonical heights using arithmetic intersection theory , 2011, Math. Comput..
[15] B. Baran. An exceptional isomorphism between modular curves of level 13 , 2014 .
[16] S. Lang. Fundamentals of Diophantine Geometry , 1983 .
[17] S. Siksek. Infinite Descent on Elliptic Curves , 1995 .
[18] Raymond van Bommel. Numerical Verification of the Birch and Swinnerton-Dyer Conjecture for Hyperelliptic Curves of Higher Genus over ℚ up to Squares , 2017, Experimental Mathematics.
[19] S. Lang. Introduction to Arakelov Theory , 1988 .
[20] D. Mumford. Tata Lectures on Theta I , 1982 .
[21] An exceptional isomorphism between level 13 modular curves via Torelli’s Theorem , 2014 .
[22] Qing Liu,et al. Algebraic Geometry and Arithmetic Curves , 2002 .
[23] Michael Stoll,et al. On the height constant for curves of genus two, II , 1999 .
[24] Mathematische,et al. Heegner Points and Derivatives of L-Series. II , 2005 .
[25] Bjorn Poonen,et al. Explicit descent for Jacobians of cyclic coevers of the projective line. , 1997 .
[26] Michael Stoll,et al. Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves , 2001, Math. Comput..
[27] Bjorn Poonen,et al. The Cassels-Tate pairing on polarized abelian varieties , 1999 .
[28] Joseph H. Silverman,et al. Computing heights on elliptic curves , 1988 .
[29] Florian Hess,et al. Computing Riemann-Roch Spaces in Algebraic Function Fields and Related Topics , 2002, J. Symb. Comput..
[30] P. Hriljac. HEIGHTS AND ARAKELOV'S INTERSECTION THEORY , 1985 .
[31] Gerd Faltings,et al. Calculus on arithmetic surfaces , 1984 .
[32] Jennifer S. Balakrishnan,et al. Explicit Chabauty—Kim for the split Cartan modular curve of level 13 , 2017, Annals of Mathematics.