Asymptotic energy behavior of two classical intermediate benchmark shell problems

We consider two classical problems which are widely used as benchmark tests for shell numerical methods: the Scordelis-Lo roof and the pinched roof. Due to the particular load and boundary conditions applied, neither belongs to the well known classes of purely bending or purely membrane dominated shells. Consequently the asymptotic energy norm behavior, which is useful not only because it represents the structure stiffness, but also for numerical comparison purposes, is not a priori known. In this work, using space interpolation techniques and a recently developed ``intermediate'''' shell theory, the asymptotic energy behavior of both problems is found analytically. The results are in agreement with the numerical estimates obtained in other papers.

[1]  F. Brezzi,et al.  Sur la classification des coques linéairement élastiques , 1999 .

[2]  M. Bernadou,et al.  Finite Element Methods for Thin Shell Problems , 1996 .

[3]  Carlo Lovadina,et al.  A SHELL CLASSIFICATION BY INTERPOLATION , 2002 .

[4]  P. Ciarlet Mathematical modelling of linearly elastic shells , 2001, Acta Numerica.

[5]  J. Lions,et al.  Sur Une Classe D’Espaces D’Interpolation , 1964 .

[6]  Phill-Seung Lee,et al.  On the asymptotic behavior of shell structures and the evaluation in finite element solutions , 2002 .

[7]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[8]  E. Sanchez-Palencia,et al.  Asymptotic and spectral properties of a class of singular-stiff problems , 1992 .

[9]  Otso Ovaskainen,et al.  Shell deformation states and the finite element method : a benchmark study of cylindrical shells , 1995 .

[10]  Lourenco Beirao da Veiga Theoretical and numerical study of shell intermediate states on particular toroidal and cylindrical problems , 2001 .

[11]  J. Lions,et al.  Problèmes sensitifs et coques élastiques minces , 1996 .

[12]  K. Bathe,et al.  Fundamental considerations for the finite element analysis of shell structures , 1998 .

[13]  Dominique Chapelle,et al.  A shell problem ‘highly sensitive’ to thickness changes , 2003 .

[14]  Douglas N. Arnold,et al.  Locking-free finite element methods for shells , 1997, Math. Comput..

[15]  Alexander G Iosilevich,et al.  An evaluation of the MITC shell elements , 2000 .