Asymptotic energy behavior of two classical intermediate benchmark shell problems
暂无分享,去创建一个
[1] F. Brezzi,et al. Sur la classification des coques linéairement élastiques , 1999 .
[2] M. Bernadou,et al. Finite Element Methods for Thin Shell Problems , 1996 .
[3] Carlo Lovadina,et al. A SHELL CLASSIFICATION BY INTERPOLATION , 2002 .
[4] P. Ciarlet. Mathematical modelling of linearly elastic shells , 2001, Acta Numerica.
[5] J. Lions,et al. Sur Une Classe D’Espaces D’Interpolation , 1964 .
[6] Phill-Seung Lee,et al. On the asymptotic behavior of shell structures and the evaluation in finite element solutions , 2002 .
[7] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[8] E. Sanchez-Palencia,et al. Asymptotic and spectral properties of a class of singular-stiff problems , 1992 .
[9] Otso Ovaskainen,et al. Shell deformation states and the finite element method : a benchmark study of cylindrical shells , 1995 .
[10] Lourenco Beirao da Veiga. Theoretical and numerical study of shell intermediate states on particular toroidal and cylindrical problems , 2001 .
[11] J. Lions,et al. Problèmes sensitifs et coques élastiques minces , 1996 .
[12] K. Bathe,et al. Fundamental considerations for the finite element analysis of shell structures , 1998 .
[13] Dominique Chapelle,et al. A shell problem ‘highly sensitive’ to thickness changes , 2003 .
[14] Douglas N. Arnold,et al. Locking-free finite element methods for shells , 1997, Math. Comput..
[15] Alexander G Iosilevich,et al. An evaluation of the MITC shell elements , 2000 .