Piecewise Polyhedral Formulations for a Multilinear Term

In this paper, we present a mixed-integer linear programming (MILP) formulation of a piecewise, polyhedral relaxation (PPR) of a multilinear term using its convex hull representation. Based on the solution of the PPR, we also present a MILP formulation whose solutions are feasible for nonconvex, multilinear equations. We then present computational results showing the effectiveness of proposed formulations on instances of standard benchmarks of nonlinear programs (NLPs) with multilinear terms and compare the proposed formulation with a traditional formulation that is built by recursively relaxing bilinear groupings of multilinear terms.

[1]  Manfred W. Padberg,et al.  Approximating Separable Nonlinear Functions Via Mixed Zero-One Programs , 1998, Oper. Res. Lett..

[2]  Sonia Cafieri,et al.  On the composition of convex envelopes for quadrilinear terms , 2013 .

[3]  Russell Bent,et al.  An adaptive, multivariate partitioning algorithm for global optimization of nonconvex programs , 2017, J. Glob. Optim..

[4]  Juan Pablo Vielma,et al.  Nonconvex piecewise linear functions: Advanced formulations and simple modeling tools , 2017, 1708.00050.

[5]  Jon Lee,et al.  Polyhedral methods for piecewise-linear functions I: the lambda method , 2001, Discret. Appl. Math..

[6]  George L. Nemhauser,et al.  Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions , 2010, Oper. Res..

[7]  E. M. L. Beale,et al.  Global optimization using special ordered sets , 1976, Math. Program..

[8]  Juan Pablo Vielma,et al.  A Combinatorial Approach for Small and Strong Formulations of Disjunctive Constraints , 2019, Math. Oper. Res..

[9]  Pedro M. Castro,et al.  Tightening piecewise McCormick relaxations for bilinear problems , 2015, Comput. Chem. Eng..

[10]  Nikolaos V. Sahinidis,et al.  BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..

[11]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[12]  Ignacio E. Grossmann,et al.  A piecewise McCormick relaxation-based strategy for scheduling operations in a crude oil terminal , 2017, Comput. Chem. Eng..

[13]  J. K. Lowe Modelling with Integer Variables. , 1984 .

[14]  Iain Dunning,et al.  JuMP: A Modeling Language for Mathematical Optimization , 2015, SIAM Rev..

[15]  Egon Balas Disjunctive Programming , 2010, 50 Years of Integer Programming.

[16]  Christodoulos A. Floudas,et al.  Global optimization of mixed-integer quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear and edge-concave relaxations , 2012, Mathematical Programming.

[17]  Jon Lee,et al.  Algorithmic and modeling insights via volumetric comparison of polyhedral relaxations , 2018, Math. Program..

[18]  Harsha Nagarajan,et al.  Tightening McCormick Relaxations for Nonlinear Programs via Dynamic Multivariate Partitioning , 2016, CP.

[19]  Ambros M. Gleixner,et al.  SCIP: global optimization of mixed-integer nonlinear programs in a branch-and-cut framework , 2018, Optim. Methods Softw..

[20]  James R. Luedtke,et al.  Locally ideal formulations for piecewise linear functions with indicator variables , 2013, Oper. Res. Lett..

[21]  Christodoulos A. Floudas,et al.  Deterministic global optimization - theory, methods and applications , 2010, Nonconvex optimization and its applications.

[22]  Christodoulos A. Floudas,et al.  APOGEE: Global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes , 2011, Comput. Chem. Eng..

[23]  Nikolaos V. Sahinidis,et al.  Global optimization of nonconvex problems with multilinear intermediates , 2015, Math. Program. Comput..

[24]  James E. Falk,et al.  Jointly Constrained Biconvex Programming , 1983, Math. Oper. Res..

[25]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[26]  James R. Luedtke,et al.  Some results on the strength of relaxations of multilinear functions , 2012, Math. Program..

[27]  Anatoliy D. Rikun,et al.  A Convex Envelope Formula for Multilinear Functions , 1997, J. Glob. Optim..

[28]  I. Karimi,et al.  Piecewise linear relaxation of bilinear programs using bivariate partitioning , 2009 .