Discretization of variational regularization in Banach spaces

Consider a nonlinear ill-posed operator equation F(u) = y, where F is defined on a Banach space X. In this paper we analyze finite-dimensional variational regularization, which takes into account operator approximations and noisy data. As shown in the literature, depending on the setting, convergence of the regularized solutions of the finite-dimensional problems can be with respect to the strong or just a weak topology. In this paper our contribution is twofold. First, we derive convergence rates in terms of Bregman distances in the convex regularization setting under appropriate sourcewise representation of a solution of the equation. Secondly, for particular regularization realizations in nonseparable Banach spaces, we discuss the finite-dimensional approximations of the spaces and the type of convergence, which is needed for the convergence analysis. These considerations lay the fundament for efficient numerical implementation. In particular, we emphasize on the space X of finite total variation functions and analyze in detail the cases when X is the space of the functions of finite bounded deformation and the L∞-space. The latter two settings are of interest in numerous problems arising in optimal control, machine learning and engineering.

[1]  O. Scherzer,et al.  Regularization of ill-posed linear equations by the non- stationary augmented Lagrangian method , 2010 .

[2]  Yoram Singer,et al.  Efficient Online and Batch Learning Using Forward Backward Splitting , 2009, J. Mach. Learn. Res..

[3]  Otmar Scherzer,et al.  Variational Methods in Imaging , 2008, Applied mathematical sciences.

[4]  O. Scherzer,et al.  Sparse regularization with lq penalty term , 2008, 0806.3222.

[5]  Lin He,et al.  Error estimation for Bregman iterations and inverse scale space methods in image restoration , 2007, Computing.

[6]  A. S. Leonov,et al.  On the total-variation convergence of regularizing algorithms for ill-posed problems , 2007 .

[7]  O. Scherzer,et al.  A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators , 2007 .

[8]  O. Scherzer,et al.  Error estimates for non-quadratic regularization and the relation to enhancement , 2006 .

[9]  A. Leonov Regularization of ill-posed problems in Sobolev space W 1 1 , 2005 .

[10]  E. Resmerita Regularization of ill-posed problems in Banach spaces: convergence rates , 2005 .

[11]  S. Osher,et al.  Convergence rates of convex variational regularization , 2004 .

[12]  A. Chambolle An approximation result for special functions with bounded deformation , 2004 .

[13]  Mitchell Luskin,et al.  APPROXIMATION BY PIECEWISE CONSTANT FUNCTIONS IN A BV METRIC , 2003 .

[14]  Günter Leugering,et al.  Regularization of L∞-Optimal Control Problems for Distributed Parameter Systems , 2002, Comput. Optim. Appl..

[15]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[16]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[17]  K. Kunisch,et al.  Regularization by Functions of Bounded Variation and Applications to Image Enhancement , 1999 .

[18]  Jin Qi-nian Applications of the Modified Discrepancy Principle to Tikhonov Regularization of Nonlinear Ill-Posed Problems , 1999 .

[19]  Gjerrit Meinsma,et al.  On inverse problems in 2-norm and infinity-norm controller synthesis , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[20]  Robert E. Megginson An Introduction to Banach Space Theory , 1998 .

[21]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[22]  A. Tikhonov,et al.  Nonlinear Ill-Posed Problems , 1997 .

[23]  K. Kunisch,et al.  On the Injectivity and Linearization of the Coefficient-to-Solution Mapping for Elliptic Boundary Value Problems , 1994 .

[24]  Jonathan M. Borwein,et al.  Convergence of Best Entropy Estimates , 1991, SIAM J. Optim..

[25]  Robert Plato,et al.  On the regularization of projection methods for solving III-posed problems , 1990 .

[26]  Andreas Neubauer,et al.  Tikhonov regularisation for non-linear ill-posed problems: optimal convergence rates and finite-dimensional approximation , 1989 .

[27]  H. Engl,et al.  Convergence rates for Tikhonov regularisation of non-linear ill-posed problems , 1989 .

[28]  Roger Temam,et al.  Functions of bounded deformation , 1980 .

[29]  D. J. H. Garling,et al.  GEOMETRIC FUNCTIONAL ANALYSIS AND ITS APPLICATION , 1977 .

[30]  R. Holmes Geometric Functional Analysis and Its Applications , 1975 .

[31]  Guy Chavent,et al.  Nonlinear Least Squares for Inverse Problems , 2010 .

[32]  O. Scherzer,et al.  FA ] 2 9 Ju l 2 00 8 Sparse Regularization with l q Penalty Term , 2008 .

[33]  H. Zou,et al.  The F ∞ -norm support vector machine , 2008 .

[34]  Barbara Kaltenbacher,et al.  A Convergence Rates Result in Banach Spaces with Non-Smooth Operators , 2006 .

[35]  Martin Gugat,et al.  Analytic Solutions of L∞ Optimal Control Problems for the Wave Equation , 2002 .

[36]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[37]  A. G. Yagola,et al.  Numerical solution of nonlinear ill-posed problems , 1998 .

[38]  Ben G. Fitzpatrick,et al.  On approximation in total variation penalization for image reconstruction and inverse problems , 1997 .

[39]  E. Zuazua,et al.  Contrôlabilité approchée de l'équation de la chaleur linéaire avec des contrôles de norme L∞ minimale , 1993 .

[40]  Otmar Scherzer,et al.  Finite-dimensional approximation of tikhonov regularized solutions of non-linear ill-posed problems , 1990 .

[41]  A Neubauer Tikhonov regularisation for non-linear ill-posed problems: optimal convergence rates and finite-dimensional approximation , 1989 .

[42]  H W Engl,et al.  Convergence rates for Tikhonov regularisation of non-linear ill-posed problems , 1989 .

[43]  R. S. Anderssen,et al.  The Linear Functional Strategy for Improperly Posed Problems , 1986 .

[44]  R. Temam,et al.  Problèmes mathématiques en plasticité , 1983 .