Structural, spectroscopic and angular-overlap studies of the nature of metal-ligand bonding for tripod ligands

The metal(II) complexes [M{(pz)2(py)CH}2][NO3]2(M = Fe, Co, Ni, Cu or Zn), where (pz)2(py)CH is the unsymmetrical tripodal nitrogen-donor ligand bis(pyrazol-1-yl)(pyridin-2-yl)methane, have been prepared and examined by single-crystal X-ray diffraction and single-crystal electronic spectroscopy. The structural studies, and the application of the angular overlap model to the spectroscopic results, provide new information on the bonding characteristics of tripod ligands and a comparison of pyrazole and pyridine groups. The zinc complex crystallizes in both the monoclinic (P21/c) and triclinic (P) systems, the monoclinic complex being isomorphous with those of cobalt and copper. The cations are centrosymmetric, but exhibit disorder in the orientation of the pyrazole and pyridine rings, except for the copper complex which exhibits a Jahn–Teller distortion involving two Cu–N (pz) bonds which are ca. 0.038 A longer than the other Cu–N distances. Except for the copper complex, the ligands form ‘bite’ angles N–M–N of 83.8(2)–86.9(2)°, resulting in a slight trigonal distortion from octahedral geometry. The tripod ligand produces a relatively strong ligand field, consistent with the rather short metal–nitrogen bond lengths in the complexes. The pyridine group is a slightly stronger σ donor than the pyrazole groups, with both amines acting as weak π donors.

[1]  M. A. Hitchman,et al.  Electronic spectra and bonding parameters of three planar complexes trans-dichlorobis(heterocyclic amine)copper where N is a heterocyclic amine , 1990 .

[2]  A. Canty,et al.  The synthesis of tripodal nitrogen donor ligands and their characterization as PdIIMe2 and PdIIIMe derivatives , 1990 .

[3]  M. A. Hitchman,et al.  Electronic, EPR and vibrational spectra of the hexachlorocuprate(4-) ion , 1989 .

[4]  M. Riley,et al.  Angular overlap treatment of the variation of the intensities and energies of the d-d transitions of the tetrachlorocuprate(2-) ion on distortion from a planar toward a tetrahedral geometry: interpretation of the electronic spectra of bis(N-benzylpiperazinium) tetrachlorocuprate(II) bis(hydrochlorid , 1988 .

[5]  F. Keene,et al.  Stabilization of cobalt(I) by tripodal π-acceptor ligands Py3X (Py=2-pyridyl; X=N, Ch, COH, P, P=O), and preliminary studies on the reaction of water and carbon dioxide with the bis(ligand)cobalt(I) complexes , 1988 .

[6]  B. Lippert,et al.  Ligating properties of platinum(II) ions in mixed-metal (Pt2M) trimers (M = copper(II), nickel(II), cobalt(II), iron(II)) , 1986 .

[7]  M. A. Hitchman Interpretation of Copper(II) Hyperfine Parameters. , 1986 .

[8]  M. Gerloch,et al.  Redirected ligand-field analysis. 2. Asymmetric chelation in trigonal-bipyramidal copper(II) complexes , 1984 .

[9]  D. Gatteschi,et al.  The angular overlap model for the description of the paramagnetic properties of transition metal complexes , 1984 .

[10]  L. Pueyo,et al.  On the RML dependence of 10Dq , 1983 .

[11]  A. Ceulemans,et al.  LIGAND FIELD SPECTRA OF SQUARE-PLANAR PLATINUM(II) AND PALLADIUM(II) COMPLEXES , 1981 .

[12]  C. E. Schaeffer,et al.  Transferability of ligand field parameters and nonlinear ligation in chromium(III) complexes , 1980 .

[13]  D. Gatteschi,et al.  Electron spin resonance spectra of low-symmetry high-spin cobalt(II) complexes. 4. Tetragonal-octahedral dichlorotetrakis(pyridine)- and dichlorotetrakis(pyrazole)cobalt(II) , 1980 .

[14]  R. S. Brown,et al.  Synthesis and physical studies of pyridine and imidazole containing tridentate metal binding ligands , 1980 .

[15]  J. Ferguson,et al.  Electronic spectra of M(bipy) 2+ 3 complexions (M = Fe, Ru and Os) , 1979 .

[16]  Derek W. Smith Is pyridine a .pi. acceptor in trans-dihalogenotetrakis (pyridine)chromium(III) ions? , 1978 .

[17]  C. C. Tang,et al.  Models for metal binding sites in zinc enzymes. Syntheses of tris[4(5)-imidazolyl]carbinol (4-TIC), tris(2-imidazolyl)carbinol (2-TIC), and related ligands, and studies on metal complex binding constants and spectra , 1978 .

[18]  G. Long,et al.  Crystal and Molecular Structures of Trans-tetrakis(pyridine)dichloroiron(II), -nickel(II), and -cobalt(II) and Trans-tetrakis(pyridine)dichloroiron(II) Monohydrate , 1978 .

[19]  D. W. Smith Angular overlap treatment of d-s and d-p mixing in chlorocuprates(II) , 1977 .

[20]  Joergen Glerup,et al.  Nonadditive and additive ligand fields and spectrochemical series arising from ligand field parameterization schemes. Pyridine as a nonlinearly ligating .pi.-back-bonding ligand toward chromium(III) , 1976 .

[21]  R. Boggess,et al.  Electrochemical properties of cobalt(II) complexes of the tridentate ligands tri(2-pyridyl)amine, tri(2-pyridyl)phosphine, tri(2-pyridyl)phosphine oxide, and tri(2-pyridyl)arsine , 1976 .

[22]  E. Prince,et al.  Neutron diffraction structure determination of dichlorotetrapyrazolecopper(II), Cu(C3H4N2)4Cl2 , 1975 .

[23]  S. Trofimenko The coordination chemistry of pyrazole-derived ligands , 1972 .

[24]  A. Mighell,et al.  The crystal and molecular structure of hexapyrazolenickel(II) nitrate, Ni(C3H4N2)6(NO3)2 , 1970 .

[25]  C. Reimann The Single Crystal Spectra of Dichlorotetrapyrazolenickel(II), Dibromotetrapyrazolenickel(II), and Hexapyrazolenickel(II) Nitrate , 1970 .

[26]  Derek W. Smith Dependence of 10Dq on the Metal–Ligand Distance in NiO , 1969 .

[27]  H. G. Drickamer Effect of Interionic Distance on the Ligand Field in NiO , 1967 .

[28]  A. Mighell,et al.  The crystal and molecular structure of tetrakispyrazolenickel chloride, Ni(C3H4N2)4Cl2 , 1967 .

[29]  J. Jesson,et al.  Spin equilibria in octahedral iron(II) poly((1-pyrazolyl)-borates , 1967 .

[30]  H. G. Drickamer,et al.  Effect of Pressure on the Spectra of Transition Metal Ions in MgO and Al2O3 , 1961 .