On the performance of long‐range‐corrected density functional theory and reduced‐size polarized LPol‐n basis sets in computations of electric dipole (hyper)polarizabilities of π‐conjugated molecules

Static longitudinal electric dipole (hyper)polarizabilities are calculated for six medium‐sized π‐conjugated organic molecules using recently developed LPol‐n basis set family to assess their performance. Dunning's correlation‐consistent basis sets of triple‐ζ quality combined with MP2 method and supported by CCSD(T)/aug‐cc‐pVDZ results are used to obtain the reference values of analyzed properties. The same reference is used to analyze (hyper)polarizabilities predicted by selected exchange‐correlation functionals, particularly those asymptotically corrected. © 2012 Wiley Periodicals, Inc.

[1]  Hans Peter Lüthi,et al.  On the accurate calculation of polarizabilities and second hyperpolarizabilities of polyacetylene oligomer chains using the CAM-B3LYP density functional. , 2009, The Journal of chemical physics.

[2]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[3]  G. Scuseria,et al.  Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals. , 2006, The Journal of chemical physics.

[4]  Kimihiko Hirao,et al.  Nonlinear optical property calculations by the long-range-corrected coupled-perturbed Kohn-Sham method. , 2005, The Journal of chemical physics.

[5]  A. J. Sadlej,et al.  Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties , 1991 .

[6]  Dmitrij Rappoport,et al.  Property-optimized gaussian basis sets for molecular response calculations. , 2010, The Journal of chemical physics.

[7]  Antonio Rizzo,et al.  Accurate Nonlinear Optical Properties for Small Molecules , 2006 .

[8]  Manthos G. Papadopoulos,et al.  Linear—Scaling Calculations of Linear and Nonlinear Optical Properties of [60]fullerene Derivatives , 2009 .

[9]  Steven E. J. Bell,et al.  Reduced–size polarized basis sets for calculations of molecular electric properties. III. Second–row atoms , 2005 .

[10]  K. Hirao,et al.  A long-range-corrected time-dependent density functional theory. , 2004, The Journal of chemical physics.

[11]  I. Černušák,et al.  High second-order NLO responses of dehydrogenated hydrogen cyanide borane(1) oligomers , 2010 .

[12]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[13]  Giovanni Scalmani,et al.  Assessment of the efficiency of long-range corrected functionals for some properties of large compounds. , 2007, The Journal of chemical physics.

[14]  Goebel,et al.  Theoretical and experimental determination of the polarizabilities of the zinc 1S0 state. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[15]  Denis Jacquemin,et al.  A generalized Romberg differentiation procedure for calculation of hyperpolarizabilities , 2007 .

[16]  Jeff R. Hammond,et al.  Accurate dipole polarizabilities for water clusters n=2-12 at the coupled-cluster level of theory and benchmarking of various density functionals. , 2009, The Journal of chemical physics.

[17]  G. Scuseria,et al.  Assessment of a long-range corrected hybrid functional. , 2006, The Journal of chemical physics.

[18]  Antonio Rizzo,et al.  New basis sets for the evaluation of the CO–Ne van der Waals complex interaction induced electric dipole moment and polarizability surfaces , 2012 .

[19]  K. Hirao,et al.  A long-range correction scheme for generalized-gradient-approximation exchange functionals , 2001 .

[20]  J. Hammond,et al.  Dynamic polarizabilities of polyaromatic hydrocarbons using coupled-cluster linear response theory. , 2007, The Journal of chemical physics.

[21]  H. Rutishauser,et al.  Ausdehnung des Rombergschen Prinzips , 1963 .

[22]  Alistair P. Rendell,et al.  Investigation of a diagnostic for perturbation theory. Comparison to the T1 diagnostic of coupled-cluster theory , 1995 .

[23]  D. M. Bishop,et al.  Dipole and higher order polarizabilities of the 10-electron systems , 1986 .

[24]  Benoît Champagne,et al.  Electric field dependence of the exchange-correlation potential in molecular chains , 1999 .

[25]  Shih-I Lu,et al.  Density functional theory calculations of dynamic first hyperpolarizabilities for organic molecules in organic solvent: comparison to experiment. , 2011, The Journal of chemical physics.

[26]  Angelika Baranowska-Laczkowska,et al.  Polarized basis sets for accurate calculations of static and dynamic electric properties of molecules , 2010, J. Comput. Chem..

[27]  Benoît Champagne,et al.  Assessment of Conventional Density Functional Schemes for Computing the Polarizabilities and Hyperpolarizabilities of Conjugated Oligomers: An Ab Initio Investigation of Polyacetylene Chains , 1998 .

[28]  D. M. Bishop,et al.  On the electric polarisabilities of Li+(1S), Li(2S) and Li-(1S) , 1986 .

[29]  Giovanni Scalmani,et al.  First hyperpolarizability of polymethineimine with long-range corrected functionals. , 2007, The Journal of chemical physics.

[30]  Berta Fernández,et al.  New bases for the evaluation of interaction energies: An ab initio study of the CO–Ne van der Waals complex intermolecular potential and ro-vibrational spectrum , 2011, CP 2011.

[31]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[32]  Paweł Sałek,et al.  Calculations of two-photon charge-transfer excitations using Coulomb-attenuated density-functional theory. , 2005, The Journal of chemical physics.

[33]  Berta Fernández,et al.  Importance of electron correlation effects and basis set superposition error in calculations of interaction energies and interaction-induced electric properties in hydrogen-bonded complexes: a model study , 2011 .

[34]  Roland Lindh,et al.  2MOLCAS as a development platform for quantum chemistry software , 2004 .

[35]  Paweł Sałek,et al.  Structural and electronic properties of polyacetylene and polyyne from hybrid and Coulomb-attenuated density functionals. , 2007, The journal of physical chemistry. A.

[36]  Tadeusz Pluta,et al.  Static NLO responses of fluorinated polyacetylene chains evaluated with long-range corrected density functionals , 2011 .

[37]  Berta Fernández,et al.  Interaction-induced electric properties and cooperative effects in model systems. , 2010, Physical chemistry chemical physics : PCCP.

[38]  B. Roos,et al.  Molcas: a program package for computational chemistry. , 2003 .

[39]  Benoît Champagne,et al.  Relationship between static vibrational and electronic hyperpolarizabilities of π-conjugated push–pull molecules within the two-state valence-bond charge-transfer model , 1998 .

[40]  A. J. Sadlej,et al.  Molecular electric polarizabilities. Electronic-field-variant (EFV) gaussian basis set for polarizability calculations , 1977 .

[41]  Thierry Kogej,et al.  Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores , 1998 .

[42]  Hideo Sekino,et al.  Calculation of electric dipole (hyper)polarizabilities by long-range-correction scheme in density functional theory: a systematic assessment for polydiacetylene and polybutatriene oligomers. , 2008, The Journal of chemical physics.

[43]  Berta Fernández,et al.  New basis sets for the evaluation of interaction energies: an ab initio study of the He-He, Ne-Ne, Ar-Ar, He-Ne, He-Ar and Ne-Ar van der Waals complex internuclear potentials and ro-vibrational spectra. , 2010, Physical chemistry chemical physics : PCCP.

[44]  George Maroulis,et al.  Electric moments, polarizabilities and hyperpolarizabilities for carbon disulfide (SCS) from accurate SCF calculations , 1992 .

[45]  Denis Jacquemin,et al.  Assessment of Conventional Density Functional Schemes for Computing the Dipole Moment and (Hyper)polarizabilities of Push−Pull π-Conjugated Systems† , 2000 .

[46]  Jerzy Leszczynski,et al.  Non-linear optical properties of matter : from molecules to condensed phases , 2006 .

[47]  Karol Kowalski,et al.  Parallel computation of coupled-cluster hyperpolarizabilities. , 2009, The Journal of chemical physics.

[48]  Steven E. J. Bell,et al.  Reduced‐size polarized basis sets for calculations of molecular electric properties. I. The basis set generation , 2005, J. Comput. Chem..

[49]  Angelika Baranowska-Laczkowska,et al.  Model studies of the optical rotation, and theoretical determination of its sign for β‐pinene and trans‐pinane , 2010, J. Comput. Chem..

[50]  Ivan Černušák,et al.  Standardized Medium-Size Basis Sets for Calculations of Molecular Electric Properties: Group IIIA , 2003 .

[51]  Michel Dupuis,et al.  Electron correlation effects in hyperpolarizabilities of p-nitroaniline , 1993 .

[52]  FRANCESCO AQUILANTE,et al.  MOLCAS 7: The Next Generation , 2010, J. Comput. Chem..

[53]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[54]  Carlo Adamo,et al.  Bond Length Alternation of Conjugated Oligomers: Wave Function and DFT Benchmarks. , 2011, Journal of chemical theory and computation.

[55]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[56]  Seth R. Marder,et al.  Electric Field Modulated Nonlinear Optical Properties of Donor-Acceptor Polyenes: Sum-Over-States Investigation of the Relationship between Molecular Polarizabilities (.alpha., .beta., and .gamma.) and Bond Length Alternation , 1994 .

[57]  M G Papadopoulos,et al.  Linear and nonlinear optical properties of [60]fullerene derivatives. , 2009, The journal of physical chemistry. A.

[58]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[59]  D. M. Bishop,et al.  Electric polarizabilities and hyperpolarizabilities for the ground state of the nitrogen molecule , 1986 .

[60]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[61]  David Feller,et al.  Basis Set Selection for Molecular Calculations , 1986 .

[62]  Berta Fernández,et al.  Accurate calculation of the intensity dependence of the refractive index using polarized basis sets. , 2012, The Journal of chemical physics.

[63]  A. J. Sadlej,et al.  Reduced-size polarized basis sets for calculations of molecular electric properties. IV. First-row transition metals , 2007 .

[64]  Claude Pouchan,et al.  Molecules in static electric fields: Linear and nonlinear polarizability of HC≡N and HC≡P , 1998 .