Random Matrix-Based Approach for Uncertainty Analysis of the Eigensystem Realization Algorithm

In this paper, uncertainty in the state space matrices in a linear stochastic time–invariant discrete time system is presented by performing uncertainty analysis of the eigensystem realization algo...

[1]  Manoranjan Majji,et al.  Uncertainty Quantification of the Eigensystem Realization Algorithm Using the Unscented Transform , 2013 .

[2]  Richard W. Longman,et al.  Variance and Bias Computation for Improved Modal Identification using ERA/DC , 1991, 1991 American Control Conference.

[3]  J. Juang,et al.  Effects of Noise on Modal Parameters Identified by the Eigensystem Realization Algorithm , 1986 .

[4]  A. James Distributions of Matrix Variates and Latent Roots Derived from Normal Samples , 1964 .

[5]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .

[6]  C. Khatri Distribution of the Largest or the Smallest Characteristic Root Under Null Hypothesis Concerning Complex Multivariate Normal Populations , 1964 .

[7]  Moe Z. Win,et al.  On the marginal distribution of the eigenvalues of wishart matrices , 2009, IEEE Transactions on Communications.

[8]  R. Skelton,et al.  Modeling Hubble Space Telescope Flight Data by Q-Markov Cover Identification , 1992, 1992 American Control Conference.

[9]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[10]  P. V. D. Hof,et al.  Identification of probabilistic system uncertainty regions by explicit evaluation of bias and variance errors , 1997, IEEE Trans. Autom. Control..

[11]  C. Khatri Non-central distributions ofith largest characteristic roots of three matrices concerning complex multivariate normal populations , 1969 .

[12]  Bart De Moor,et al.  A unifying theorem for three subspace system identification algorithms , 1995, Autom..

[13]  Sheng Chen,et al.  Orthogonal least squares methods and their application to non-linear system identification , 1989 .

[14]  Ranjan K. Mallik,et al.  The pseudo-Wishart distribution and its application to MIMO systems , 2003, IEEE Trans. Inf. Theory.

[15]  Sonia Aïssa,et al.  Joint and Marginal Eigenvalue Distributions of (Non)Central Complex Wishart Matrices and PDF-Based Approach for Characterizing the Capacity Statistics of MIMO Ricean and Rayleigh Fading Channels , 2007, IEEE Transactions on Wireless Communications.

[16]  K. I. Gross,et al.  Total positivity, spherical series, and hypergeometric functions of matrix argu ment , 1989 .

[17]  Richard W. Longman,et al.  Variance and bias confidence criteria for ERA modal parameter identification. [Eigensystem Realization Algorithm] , 1988 .

[18]  J. Magnus,et al.  The Commutation Matrix: Some Properties and Applications , 1979 .