Random noise attenuation using f-x regularized nonstationary autoregression

We have developed a novel method for random noise attenuation in seismic data by applying regularized nonstationary autoregression (RNA) in the frequency-space (f-x) domain. The method adaptively predicts the signal with spatial changes in dip or amplitude using f-x RNA. The key idea is to overcome the assumption of linearity and stationarity of the signal in conventional f-x domain prediction technique. The conventional f-x domain prediction technique uses short temporal and spatial analysis windows to cope with the nonstationary of the seismic data. The new method does not require windowing strategies in spatial direction. We implement the algorithm by an iterated scheme using the conjugate-gradient method. We constrain the coefficients of nonstationary autoregression (NA) to be smooth along space and frequency in the f-x domain. The shaping regularization in least-square inversion controls the smoothness of the coefficients of f-x RNA. There are two key parameters in the proposed method: filter length ...

[1]  S. Spitz Seismic trace interpolation in the F-X domain , 1991 .

[2]  J. Claerbout Earth Soundings Analysis: Processing Versus Inversion , 1992 .

[3]  Mirko van der Baan,et al.  Random and coherent noise attenuation by empirical mode decomposition , 2009 .

[4]  Jingye Li,et al.  Seismic noise attenuation using nonstationary polynomial fitting , 2011 .

[5]  Yanghua Wang Seismic trace interpolation in the f‐x‐y domain , 2002 .

[6]  Rita Aggarwala,et al.  Frequency Slice Filtering - a Novel Method of Seismic Noise Attenuation , 2002 .

[7]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  Sergey Fomel,et al.  Adaptive multiple subtraction using regularized nonstationary regression , 2008 .

[9]  L. Canales Random Noise Reduction , 1984 .

[10]  M A G Izquierdo,et al.  Time-varying prediction filter for structural noise reduction in ultrasonic NDE. , 2006, Ultrasonics.

[11]  C. Notfors,et al.  Seismic Trace Interpolation Using the Pyramid Transform , 2004 .

[12]  Driss Aboutajdine,et al.  New cumulant-based approaches for non-Gaussian time-varying AR models , 1994, Signal Process..

[13]  Mauricio D. Sacchi,et al.  f-x adaptive seismic-trace interpolation , 2009 .

[14]  Jon F. Claerbout,et al.  An Algorithm for Interpolation in the Pyramid Domain , 2009 .

[15]  Necati Gulunay,et al.  FXDECON and complex wiener prediction filter , 1986 .

[16]  Mauricio D. Sacchi,et al.  Adaptive Linear Prediction Filtering For Random Noise Attenuation , 2009 .

[17]  D. Aboutajdine,et al.  Fast adaptive algorithms for AR parameters estimation using higher order statistics , 1996, IEEE Trans. Signal Process..

[18]  S. Fomel,et al.  Shaping regularization in geophysical-estimation problems , 2007 .

[19]  Yang Liu,et al.  Trace Interpolation Beyond Aliasing Using Regularized Nonstationary Autoregression , 2010 .

[20]  J. Claerbout,et al.  Lateral prediction for noise attenuation by t-x and f-x techniques , 1995 .

[21]  Guochang Liu,et al.  Time-frequency analysis of seismic data using local attributes , 2011 .

[22]  Jon F. Claerbout,et al.  Interpolation with smoothly nonstationary prediction-error filters , 1999 .