The Number of Intervals in the m-Tamari Lattices

An $m$-ballot path of size $n$ is a path on the square grid consisting of north and east steps, starting at $(0,0)$, ending at $(mn,n)$, and never going below the line $\{x=my\}$. The set of these paths can be equipped with a lattice structure, called the $m$-Tamari lattice and denoted by $\mathcal{T}_n^{(m)}$, which generalizes the usual Tamari lattice $\mathcal{T}_n$ obtained when $m=1$. We prove that the number of intervals in this lattice is $$ \frac {m+1}{n(mn+1)} {(m+1)^2 n+m\choose n-1}. $$ This formula was recently conjectured by Bergeron in connection with the study of diagonal coinvariant spaces. The case $m=1$ was proved a few years ago by Chapoton. Our proof is based on a recursive description of intervals, which translates into a functional equation satisfied by the associated generating function. The solution of this equation is an algebraic series, obtained by a guess-and-check approach. Finding a bijective proof remains an open problem.

[1]  Richard P. Stanley,et al.  A Symmetric Function Generalization of the Chromatic Polynomial of a Graph , 1995 .

[2]  Philippe Di Francesco,et al.  Planar Maps as Labeled Mobiles , 2004, Electron. J. Comb..

[3]  W. T. Tutte,et al.  A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.

[4]  Bruno Salvy,et al.  GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable , 1994, TOMS.

[5]  F. Chapoton,et al.  Sur le nombre d'intervalles dans les treillis de Tamari , 2006 .

[6]  Samuel Huang,et al.  Problems of Associativity: A Simple Proof for the Lattice Property of Systems Ordered by a Semi-associative Law , 1972, J. Comb. Theory, Ser. A.

[7]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[8]  Emil Artin,et al.  Galois Theory: Lectures Delivered At The University Of Notre Dame , 2012 .

[9]  Doron Zeilberger,et al.  The Umbral Transfer-Matrix Method. I. Foundations , 2000, J. Comb. Theory, Ser. A.

[10]  Dov Tamari,et al.  Problèmes d'associativité: Une structure de treillis finis induite par une loi demi-associative , 1967 .

[11]  Dominique Poulalhon,et al.  Optimal Coding and Sampling of Triangulations , 2003, Algorithmica.

[12]  Nicolas Bonichon,et al.  Intervals in Catalan lattices and realizers of triangulations , 2009, J. Comb. Theory, Ser. A.

[13]  Jean Marcel Pallo The Rotation χ-Lattice of Ternary Trees , 2001, Computing.

[14]  Catherine H. Yan,et al.  Generalized Parking Functions, Tree Inversions, and Multicolored Graphs , 2001, Adv. Appl. Math..

[15]  Mireille Bousquet-Mélou,et al.  Generating functions for generating trees , 2002, Discret. Math..

[16]  Mireille Bousquet-Mélou,et al.  Linear recurrences with constant coefficients: the multivariate case , 2000, Discret. Math..

[17]  M. Bousquet-M'elou,et al.  Tamari lattices and parking functions: proof of a conjecture of F. Bergeron , 2011, 1109.2398.

[18]  W. G. Brown Enumeration of Triangulations of the Disk , 1964 .

[19]  Oliver Pretzel,et al.  On graphs that can be oriented as diagrams of ordered sets , 1985 .

[20]  Patrick Dehornoy,et al.  On the rotation distance between binary trees , 2009, 0901.2557.

[21]  Mireille Bousquet-Mélou,et al.  Polynomial equations with one catalytic variable, algebraic series and map enumeration , 2006, J. Comb. Theory, Ser. B.

[22]  Mark Haiman,et al.  Conjectures on the Quotient Ring by Diagonal Invariants , 1994 .

[23]  Mark Haiman,et al.  Vanishing theorems and character formulas for the Hilbert scheme of points in the plane , 2001, math/0201148.

[24]  T. Motzkin,et al.  A problem of arrangements , 1947 .

[25]  Marko Petkovšek,et al.  A=B : 等式証明とコンピュータ , 1997 .

[26]  R. Tarjan,et al.  Rotation distance, triangulations, and hyperbolic geometry , 1986, STOC '86.

[27]  Guillaume Chapuy,et al.  The representation of the symmetric group on m-Tamari intervals , 2012, 1202.5925.

[28]  Gilles Schaeer,et al.  Bijective census and random generation of Eulerian planar maps with prescribed vertex degrees , 1997 .

[29]  David Corwin Galois Theory , 2009 .

[30]  J. B. Remmel,et al.  A combinatorial formula for the character of the diagonal coinvariants , 2003, math/0310424.

[31]  Doron Zeilberger The Umbral Transfer-Matrix Method , III : Counting Animals , 2001 .

[32]  A. M. Garsia,et al.  A remarkable q, t-Catalan sequence and q-Lagrange inversion , 1996 .

[33]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[34]  Richard P. Stanley Acyclic orientations of graphs , 1973, Discret. Math..

[35]  Germain Kreweras,et al.  Sur les partitions non croisees d'un cycle , 1972, Discret. Math..

[36]  F. Bergeron,et al.  Higher Trivariate Diagonal Harmonics via generalized Tamari Posets , 2011, 1105.3738.