The Number of Intervals in the m-Tamari Lattices
暂无分享,去创建一个
Mireille Bousquet-Mélou | Éric Fusy | Louis-François Préville-Ratelle | Éric Fusy | M. Bousquet-Mélou | Louis-François Préville-Ratelle
[1] Richard P. Stanley,et al. A Symmetric Function Generalization of the Chromatic Polynomial of a Graph , 1995 .
[2] Philippe Di Francesco,et al. Planar Maps as Labeled Mobiles , 2004, Electron. J. Comb..
[3] W. T. Tutte,et al. A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.
[4] Bruno Salvy,et al. GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable , 1994, TOMS.
[5] F. Chapoton,et al. Sur le nombre d'intervalles dans les treillis de Tamari , 2006 .
[6] Samuel Huang,et al. Problems of Associativity: A Simple Proof for the Lattice Property of Systems Ordered by a Semi-associative Law , 1972, J. Comb. Theory, Ser. A.
[7] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[8] Emil Artin,et al. Galois Theory: Lectures Delivered At The University Of Notre Dame , 2012 .
[9] Doron Zeilberger,et al. The Umbral Transfer-Matrix Method. I. Foundations , 2000, J. Comb. Theory, Ser. A.
[10] Dov Tamari,et al. Problèmes d'associativité: Une structure de treillis finis induite par une loi demi-associative , 1967 .
[11] Dominique Poulalhon,et al. Optimal Coding and Sampling of Triangulations , 2003, Algorithmica.
[12] Nicolas Bonichon,et al. Intervals in Catalan lattices and realizers of triangulations , 2009, J. Comb. Theory, Ser. A.
[13] Jean Marcel Pallo. The Rotation χ-Lattice of Ternary Trees , 2001, Computing.
[14] Catherine H. Yan,et al. Generalized Parking Functions, Tree Inversions, and Multicolored Graphs , 2001, Adv. Appl. Math..
[15] Mireille Bousquet-Mélou,et al. Generating functions for generating trees , 2002, Discret. Math..
[16] Mireille Bousquet-Mélou,et al. Linear recurrences with constant coefficients: the multivariate case , 2000, Discret. Math..
[17] M. Bousquet-M'elou,et al. Tamari lattices and parking functions: proof of a conjecture of F. Bergeron , 2011, 1109.2398.
[18] W. G. Brown. Enumeration of Triangulations of the Disk , 1964 .
[19] Oliver Pretzel,et al. On graphs that can be oriented as diagrams of ordered sets , 1985 .
[20] Patrick Dehornoy,et al. On the rotation distance between binary trees , 2009, 0901.2557.
[21] Mireille Bousquet-Mélou,et al. Polynomial equations with one catalytic variable, algebraic series and map enumeration , 2006, J. Comb. Theory, Ser. B.
[22] Mark Haiman,et al. Conjectures on the Quotient Ring by Diagonal Invariants , 1994 .
[23] Mark Haiman,et al. Vanishing theorems and character formulas for the Hilbert scheme of points in the plane , 2001, math/0201148.
[24] T. Motzkin,et al. A problem of arrangements , 1947 .
[25] Marko Petkovšek,et al. A=B : 等式証明とコンピュータ , 1997 .
[26] R. Tarjan,et al. Rotation distance, triangulations, and hyperbolic geometry , 1986, STOC '86.
[27] Guillaume Chapuy,et al. The representation of the symmetric group on m-Tamari intervals , 2012, 1202.5925.
[28] Gilles Schaeer,et al. Bijective census and random generation of Eulerian planar maps with prescribed vertex degrees , 1997 .
[29] David Corwin. Galois Theory , 2009 .
[30] J. B. Remmel,et al. A combinatorial formula for the character of the diagonal coinvariants , 2003, math/0310424.
[31] Doron Zeilberger. The Umbral Transfer-Matrix Method , III : Counting Animals , 2001 .
[32] A. M. Garsia,et al. A remarkable q, t-Catalan sequence and q-Lagrange inversion , 1996 .
[33] David Thomas,et al. The Art in Computer Programming , 2001 .
[34] Richard P. Stanley. Acyclic orientations of graphs , 1973, Discret. Math..
[35] Germain Kreweras,et al. Sur les partitions non croisees d'un cycle , 1972, Discret. Math..
[36] F. Bergeron,et al. Higher Trivariate Diagonal Harmonics via generalized Tamari Posets , 2011, 1105.3738.