The Relevance of GLAS/ICESat Elevation Data for the Monitoring of River Networks

The Ice, Cloud and Land Elevation Satellite (ICESat) laser altimetry mission from 2003 to 2008 provided an important dataset for elevation measurements. The quality of GLAS/ICESat (Geoscience Laser Altimeter System) data was investigated for Lake Leman in Switzerland and France by comparing laser data to hydrological gauge water levels. The correction of GLAS/ICESat waveform saturation successfully improved the quality of water elevation data. First, the ICESat elevations and waveforms corresponding to water footprints across the transition from the land to water were analyzed. Water elevations (2 to 10 measurements) following the land-water transition are often of lesser quality. The computed accuracy for the ICESat elevation measurements is approximately 5 cm, excluding transitions footprints, and 15 cm, including these footprints. Second, the accuracy of ICESat elevation was studied using data acquired on French rivers with a width greater than the size of the ICESat footprint. The obtained root mean square error (RMSE) for ICESat elevations in regard to French rivers was 1.14 m (bias = 0.07 m; standard deviation = 1.15 m), which indicates that small rivers could not be monitored using ICESat with acceptable accuracy due to land-water transition sensor inertia.

[1]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[2]  Uwe Stilla,et al.  Range determination with waveform recording laser systems using a Wiener Filter , 2006 .

[3]  Antoine Collin,et al.  What optech’s bathymetric LiDAR sees underwater , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[4]  C. Birkett,et al.  Synergistic Remote Sensing of Lake Chad: Variability of Basin Inundation , 2000 .

[5]  M S Belen'kii,et al.  Effect of atmospheric turbulence on heterodyne lidar performance. , 1993, Applied optics.

[6]  Didier Morancais,et al.  The atmospheric lidar instrument (ATLID) , 1993 .

[7]  Frédérique Seyler,et al.  Continental surface waters from satellite altimetry , 2006 .

[8]  D. Lettenmaier,et al.  Measuring surface water from space , 2004 .

[9]  D. Siegel,et al.  Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS , 2004 .

[10]  J. Bailly,et al.  Comparison of LiDAR waveform processing methods for very shallow water bathymetry using Raman, near‐infrared and green signals , 2010 .

[11]  William B. Grant,et al.  Differential absorption lidar (DIAL) measurements from air and space , 1998 .

[12]  David Lorion Endiguements et risques d’inondation en milieu tropical. L’exemple de l’île de la Réunion , 2006 .

[13]  Anatoly A. Gitelson,et al.  Remote estimation of phytoplankton distribution in aquatic ecosystems , 2004 .

[14]  Robin T. Clarke,et al.  Measurement of river level variations with satellite altimetry , 1993 .

[15]  G. Guenther Airborne Laser Hydrography: System Design and Performance Factors , 1985 .

[16]  Michael T. Coe,et al.  Calculation of river discharge and prediction of lake height from satellite radar altimetry: Example for the Lake Chad basin , 2004 .

[17]  Victor I. Feigels Lidars for oceanological research: criteria for comparison, main limitations, perspectives , 1992, Optics & Photonics.

[18]  L. B. Leopold,et al.  The hydraulic geometry of stream channels and some physiographic implications , 1953 .

[19]  Alexander Braun,et al.  Verification of the Vertical Error in C-Band SRTM DEM Using ICESat and Landsat-7, Otter Tail County, MN , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[20]  C. Mobley Light and Water: Radiative Transfer in Natural Waters , 1994 .

[21]  Stephen K. Gill,et al.  Evaluation of the TOPEX/POSEIDON altimeter system over the Great Lakes , 1994 .

[22]  Lee-Lueng Fu,et al.  17 years and counting: Satellite altimetry from research to operations , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[23]  Nicolas Baghdadi,et al.  Wa-LiD: A New LiDAR Simulator for Waters , 2012, IEEE Geoscience and Remote Sensing Letters.

[24]  Zhaoyan Liu,et al.  High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements , 1999 .

[25]  J. Reitberger,et al.  Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees , 2008 .

[26]  H. Claustre,et al.  Optical properties of the “clearest” natural waters , 2007 .

[27]  P. Bates,et al.  Progress in integration of remote sensing–derived flood extent and stage data and hydraulic models , 2009 .

[28]  Menno Straatsma,et al.  The effect of uncertain floodplain roughness in hydrodynamic flood simulations , 2010 .

[29]  John W. McLean,et al.  Modeling of ocean wave effects for LIDAR remote sensing , 1990, Defense, Security, and Sensing.

[30]  Takao Kobayashi,et al.  Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties. , 2005, Applied optics.

[31]  H. M. Tulldahl,et al.  Analytical waveform generation from small objects in lidar bathymetry. , 1999, Applied optics.

[32]  William B. Krabill,et al.  ICESat range and mounting bias estimation over precisely‐surveyed terrain , 2005 .

[33]  William Philpot,et al.  Increasing the Existence of Very Shallow-Water LIDAR Measurements Using the Red-Channel Waveforms , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[34]  John A. Taylor,et al.  The influence of turbidity on net phytoplankton photosynthesis in some Irish lakes , 1978 .

[35]  Peng Gong,et al.  Modelling spatial‐temporal change of Poyang Lake using multitemporal Landsat imagery , 2008 .

[36]  Aloysius Wehr,et al.  Airborne laser scanning—an introduction and overview , 1999 .

[37]  Marcos Heil Costa,et al.  Surface water dynamics in the Amazon Basin: Application of satellite radar altimetry , 2001 .

[38]  J. Bryan Blair,et al.  Decomposition of laser altimeter waveforms , 2000, IEEE Trans. Geosci. Remote. Sens..

[39]  Lc Bowling,et al.  Optical properties, Nutrients and Phytoplankton of freshwater Coastal Dune Lakes in South-east Queensland , 1988 .

[40]  C. K. Shum,et al.  ICESat Laser Altimetry in the Great Lakes , 2004 .

[41]  Stefano Tarantola,et al.  Improving Random Balance Designs For The Estimation Of First Order Sensitivity Indices , 2010 .

[42]  Petteri Alho,et al.  Comparison of empirical and theoretical remote sensing based bathymetry models in river environments , 2012 .

[43]  John M. Huthnance,et al.  Numerical simulations of dense water cascading on a steep slope , 2011 .

[44]  J. Crétaux,et al.  Lake studies from satellite radar altimetry , 2006 .

[45]  Brian J. Williams,et al.  Sensitivity analysis when model outputs are functions , 2006, Reliab. Eng. Syst. Saf..

[46]  Tarmo Kõuts,et al.  Optical properties of coastal waters of northwestern Estonia: in situ measurements , 2004 .

[47]  Peter Bauer-Gottwein,et al.  Real-time remote sensing driven river basin modeling using radar altimetry , 2010 .

[48]  James B. Abshire,et al.  ICESat Receiver Signal Dynamic Range Assessment and Correction of Range Bias due to Saturation , 2005 .

[49]  H. Zwally,et al.  Overview of ICESat's Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land , 2002 .

[50]  J. Abshire,et al.  Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: On‐orbit measurement performance , 2005 .

[51]  P. Rosin The Laws Governing the Fineness of Powdered Coal , 1933 .

[52]  H. M. Tulldahl,et al.  Simulation of sea surface wave influence on small target detection with airborne laser depth sounding. , 2004, Applied optics.

[53]  Martin Charlton,et al.  Application of airborne LiDAR in river environments: the River Coquet, Northumberland, UK , 2003 .

[54]  Uwe Soergel,et al.  Lidar waveform modeling using a marked point process , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[55]  Philippe Archambault,et al.  Mapping the Shallow Water Seabed Habitat With the SHOALS , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[56]  H. Zwally,et al.  Overview of the ICESat Mission , 2005 .

[57]  Joseph B. Keller Shallow-water theory for arbitrary slopes of the bottom , 2003, Journal of Fluid Mechanics.

[58]  Jean-Stéphane Bailly,et al.  Very-high-resolution mapping of river-immersed topography by remote sensing , 2008 .

[59]  Yves-Louis Desnos,et al.  Inland lake monitoring using low and medium resolution ENVISAT ASAR and optical data: Case study of Poyang Lake (Jiangxi, P.R. China) , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[60]  Serge Andréfouët,et al.  Spectral reflectance of coral reef bottom-types worldwide and implications for coral reef remote sensing , 2003 .

[61]  L. Prieur,et al.  Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains1 , 1981 .

[62]  Jennifer L. Irish,et al.  Airborne Lidar and Airborne Hyperspectral Imagery: A Fusion of Two Proven Sensors for Improved Hydrographic Surveying , 2000 .

[63]  Bob E. Schutz,et al.  A Survey of ICESat Coastal Altimetry Applications: Continental Coast, Open Ocean Island, and Inland River , 2008 .

[64]  G. Corsini,et al.  The effect of yellow substance on pigment concentration retrieval using 'blue to green' ratio , 1994, Proceedings of OCEANS'94.

[65]  F. Moshary,et al.  Application of the method of decomposition of lidar signal-to-noise ratio to the assessment of laser instruments for gaseous pollution detection , 2004 .

[66]  J. Irish,et al.  Scanning laser mapping of the coastal zone: the SHOALS system , 1999 .

[67]  Jonathan W. Chipman,et al.  Satellite‐based assessment of the dynamics of new lakes in southern Egypt , 2007 .

[68]  Tristan Cossio,et al.  Predicting Small Target Detection Performance of Low-SNR Airborne Lidar , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[69]  D. Lyzenga Passive remote sensing techniques for mapping water depth and bottom features. , 1978, Applied optics.

[70]  Nicolas Baghdadi,et al.  Improving the assessment of ICESat water altimetry accuracy accounting for autocorrelation , 2011 .

[71]  Matieyendou Lamboni,et al.  Multivariate global sensitivity analysis for dynamic crop models , 2009 .