Surrogate model based optimization of constrained mixed variable problems: application to the design of a launch vehicle thrust frame

[1]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[2]  J. Gower A General Coefficient of Similarity and Some of Its Properties , 1971 .

[3]  Donald R. Jones,et al.  Global versus local search in constrained optimization of computer models , 1998 .

[4]  Loïc Brevault,et al.  Efficient global optimization of constrained mixed variable problems , 2018, Journal of Global Optimization.

[5]  Nils-Hassan Quttineh,et al.  An adaptive radial basis algorithm (ARBF) for expensive black-box mixed-integer constrained global optimization , 2008 .

[6]  B. Minasny,et al.  The Matérn function as a general model for soil variograms , 2005 .

[7]  K. Rashid,et al.  An adaptive multiquadric radial basis function method for expensive black-box mixed-integer nonlinear constrained optimization , 2013 .

[8]  Christine A. Shoemaker,et al.  SO-MI: A surrogate model algorithm for computationally expensive nonlinear mixed-integer black-box global optimization problems , 2013, Comput. Oper. Res..

[9]  Michael James Sasena,et al.  Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations. , 2002 .

[10]  R. Fletcher Practical Methods of Optimization , 1988 .

[11]  Momchil Halstrup,et al.  Black-box optimization of mixed discrete-continuous optimization problems , 2016 .

[12]  Francis R. Bach,et al.  Harder, Better, Faster, Stronger Convergence Rates for Least-Squares Regression , 2016, J. Mach. Learn. Res..

[13]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[14]  Raphael T. Haftka,et al.  Surrogate-based Analysis and Optimization , 2005 .

[15]  Marc A. Stelmack,et al.  GENETIC ALGORTIHMS FOR MIXED DISCRETE/CONTINUOUS OPTIMIZATION IN MULTIDISCIPLI NARY DESIGN , 1998 .

[16]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[17]  R. K. Rowe,et al.  Additive Gaussian Process for Computer Models With Qualitative and Quantitative Factors , 2017, Technometrics.

[18]  C. W. Mccormick,et al.  The NASTRAN Computer Program for Structural Analysis , 1969 .

[19]  Marc Parizeau,et al.  DEAP: evolutionary algorithms made easy , 2012, J. Mach. Learn. Res..

[20]  Wei Chen,et al.  A Latent Variable Approach to Gaussian Process Modeling with Qualitative and Quantitative Factors , 2018, Technometrics.

[21]  Timothy W. Simpson,et al.  Metamodels for Computer-based Engineering Design: Survey and recommendations , 2001, Engineering with Computers.

[22]  Martin Holena,et al.  Surrogate Model for Mixed-Variables Evolutionary Optimization Based on GLM and RBF Networks , 2013, SOFSEM.