Fracture load predictions for adhesive joints

Abstract An engineering approach to fracture load predictions for adhesive joints is presented. The approach is based on the premise that the in-situ strength of the bondline can be characterized by the fracture envelope (critical energy release rate as a function of the mode of loading), for a specific adhesive system. By using the J integral for large deformations together with large-deformation beam theory, a simple closed-form expression is obtained for the energy release rate per unit area extension when a crack propagates in the bondline of a generalized adhesive joint (adhesive sandwich). This technique, together with a published method for mode partitioning, enables fracture load prediction by comparing the calculated fracture parameters with the critical ones from the fracture envelope. The approach is shown to predict fracture loads accurately for a variety of joints including the cracked lap shear (CLS), the single lap shear (SLS) and the double strap (DS) joint.

[1]  Ws Johnson,et al.  Characterization of Mode I and Mixed-Mode Failure of Adhesive Bonds Between Composite Adherends , 1986 .

[2]  G. Fernlund,et al.  Mixed Mode Energy Release Rates for Adhesively Bonded Beam Specimens , 1994 .

[3]  L. Hart-Smith,et al.  Designing to Minimize Peel Stresses in Adhesive-Bonded Joints , 1985 .

[4]  H. L. Groth,et al.  A method to predict fracture in an adhesively bonded joint , 1985 .

[5]  S. Mall,et al.  Criterion for mixed mode fracture in composite bonded joints , 1986 .

[6]  Shankar Mall,et al.  Characterization of debond growth mechanism in adhesively bonded composites under mode II static and fatigue loadings , 1988 .

[7]  P. Czarnocki,et al.  Non-linear numerical stress analysis of a symmetric adhesive-bonded lap joint , 1986 .

[8]  A. G. Evans,et al.  An experimental study of the fracture resistance of bimaterial interfaces , 1989 .

[9]  A. D. Crocombe,et al.  Elastic analysis and engineering design formulae for bonded joints , 1989 .

[10]  A. Kinloch Adhesion and adhesives , 1987 .

[11]  A. D. Crocombe,et al.  Analysing structural adhesive joints for failure , 1990 .

[12]  K. Matsui Size-effects on average ultimate shear stresses of adhesive-bonded rectangular or tubular lap joints under tension-shear , 1990 .

[13]  J. G. Williams,et al.  On the calculation of energy release rates for cracked laminates , 1988 .

[14]  Z. Suo Failure of Brittle Adhesive Joints , 1990 .

[15]  J. K. Spelt,et al.  Analytical method for calculating adhesive joint fracture parameters , 1991 .

[16]  T. Kármán Festigkeitsprobleme im Maschinenbau , 1907 .

[17]  M. D. Thouless,et al.  Fracture of a model interface under mixed-mode loading , 1990 .

[18]  Shaw-Ming Lee An In-Situ Failure Model for Adhesive Joints , 1985 .

[19]  J. K. Spelt,et al.  Failure load prediction of structural adhesive joints: Part 2: Experimental study , 1991 .

[20]  Jan K. Spelt,et al.  Mixed-mode fracture characterization of adhesive joints , 1994 .

[21]  J. G. Williams,et al.  On the analysis of mixed-mode failure , 1992, International Journal of Fracture.

[22]  Jan K. Spelt,et al.  Failure load prediction of structural adhesive joints , 1991 .

[23]  K. Matsui Effects of size on nominal ultimate tensile stresses of adhesive-bonded circular or rectangular joints under bending or peeling load , 1990 .

[24]  A. D. Crocombe,et al.  Global yielding as a failure criterion for bonded joints , 1989 .

[25]  H. L. Groth,et al.  Stress singularities and fracture at interface corners in bonded joints , 1988 .

[26]  Zhigang Suo,et al.  Steady-state cracking in brittle substrates beneath adherent films , 1989 .

[27]  S. A. Hamoush,et al.  Fracture energy release rate of adhesive joints , 1989 .

[28]  Yutaka Kataoka,et al.  CAD system for strength evaluation of adhesively bonded joints. , 1989 .

[29]  Satya N. Atluri,et al.  Path-independent integrals in finite elasticity and inelasticity, with body forces, inertia, and arbitrary crack-face conditions , 1982 .

[30]  Zhigang Suo,et al.  Experimental determination of interfacial toughness curves using Brazil-nut-sandwiches , 1990 .

[31]  A. Wolfenden,et al.  Stress analysis of the cracked-lap-shear specimen - An ASTM round-robin , 1987 .

[32]  Z. Suo Debond mechanics of brittle materials , 1991 .

[33]  J. Harris,et al.  Strength prediction of bonded single lap joints by non-linear finite element methods , 1984 .