Fine mapping of BrWax1, a gene controlling cuticular wax biosynthesis in Chinese cabbage (Brassica rapa L. ssp. pekinensis)

[1]  Ping-ping Wang,et al.  Isolation of resistance gene analogs from grapevine resistant to downy mildew , 2013 .

[2]  A. Mañas-Fernández,et al.  Arabidopsis ECERIFERUM2 Is a Component of the Fatty Acid Elongation Machinery Required for Fatty Acid Extension to Exceptional Lengths1[W][OA] , 2012, Plant Physiology.

[3]  Jian-min Chen,et al.  Rice OsGL1-1 is involved in leaf cuticular wax and cuticle membrane. , 2011, Molecular plant.

[4]  D. Roby,et al.  Overexpression of Arabidopsis ECERIFERUM1 Promotes Wax Very-Long-Chain Alkane Biosynthesis and Influences Plant Response to Biotic and Abiotic Stresses1[W] , 2011, Plant Physiology.

[5]  L. Samuels,et al.  Plant cuticles shine: advances in wax biosynthesis and export. , 2009, Current opinion in plant biology.

[6]  V. Acosta‐Martínez,et al.  Molecular mapping and characterization of BLMC, a locus for profuse wax (bloom) and enhanced cuticular features of Sorghum (Sorghum bicolor (L.) Moench.) , 2009, Theoretical and Applied Genetics.

[7]  R. Jetter,et al.  Sealing plant surfaces: cuticular wax formation by epidermal cells. , 2008, Annual review of plant biology.

[8]  C. Müller Plant–Insect Interactions on Cuticular Surfaces , 2007 .

[9]  L. Schreiber,et al.  The CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to WAX2/YRE/FLP1 , 2007, FEBS letters.

[10]  Teresa Penfield,et al.  The Transcription Factor WIN1/SHN1 Regulates Cutin Biosynthesis in Arabidopsis thaliana[W] , 2007, The Plant Cell Online.

[11]  H. Verbeeck,et al.  Suitability of a combined stomatal conductance and photosynthesis model for calculation of leaf-level ozone fluxes. , 2007, Plant biology.

[12]  Gynheung An,et al.  Wax-deficient anther1 Is Involved in Cuticle and Wax Production in Rice Anther Walls and Is Required for Pollen Development[W] , 2006, The Plant Cell Online.

[13]  J. D’Auria Acyltransferases in plants: a good time to be BAHD. , 2006, Current opinion in plant biology.

[14]  Markus Riederer,et al.  Biology of the plant cuticle , 2006 .

[15]  Corey D Broeckling,et al.  Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). , 2005, The Plant journal : for cell and molecular biology.

[16]  Cai-Zhong Jiang,et al.  WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  S. T. Meirelles,et al.  Epicuticular waxes from caatinga and cerrado species and their efficiency against water loss. , 2003, Anais da Academia Brasileira de Ciencias.

[18]  S. Eigenbrode,et al.  Cuticular Waxes of Arabidopsis , 2002, The arabidopsis book.

[19]  L. Kunst,et al.  Significance of the Expression of the CER6 Condensing Enzyme for Cuticular Wax Production in Arabidopsis1 , 2002, Plant Physiology.

[20]  P. Schnable,et al.  The Endoplasmic Reticulum-Associated Maize GL8 Protein Is a Component of the Acyl-Coenzyme A Elongase Involved in the Production of Cuticular Waxes1 , 2002, Plant Physiology.

[21]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[22]  L. Schreiber,et al.  Protecting against water loss: analysis of the barrier properties of plant cuticles. , 2001, Journal of experimental botany.

[23]  Robert L. Fischer,et al.  Alterations in CER6, a Gene Identical to CUT1, Differentially Affect Long-Chain Lipid Content on the Surface of Pollen and Stems , 2000, Plant Cell.

[24]  P. Sieber,et al.  Transgenic Arabidopsis Plants Expressing a Fungal Cutinase Show Alterations in the Structure and Properties of the Cuticle and Postgenital Organ Fusions , 2000, Plant Cell.

[25]  U. Grossniklaus,et al.  FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[26]  D. Taylor,et al.  CUT1, an Arabidopsis Gene Required for Cuticular Wax Biosynthesis and Pollen Fertility, Encodes a Very-Long-Chain Fatty Acid Condensing Enzyme , 1999, Plant Cell.

[27]  P. Schnable,et al.  Developmental and Hormonal Regulation of the Arabidopsis CER2 Gene That Codes for a Nuclear-Localized Protein Required for the Normal Accumulation of Cuticular Waxes , 1997, Plant physiology.

[28]  P. Schnable,et al.  Sequence Analysis of the Cloned glossy8 Gene of Maize Suggests That It May Code for a [beta]-Ketoacyl Reductase Required for the Biosynthesis of Cuticular Waxes , 1997, Plant physiology.

[29]  P. Schnable,et al.  The glossy1 Locus of Maize and an Epidermis-Specific cDNA from Kleinia odora Define a Class of Receptor-Like Proteins Required for the Normal Accumulation of Cuticular Waxes , 1997, Plant physiology.

[30]  S. Moose,et al.  Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. , 1996, Genes & development.

[31]  A. Hannoufa,et al.  The CER3 gene of Arabidopsis thaliana is expressed in leaves, stems, roots, flowers and apical meristems. , 1996, The Plant journal : for cell and molecular biology.

[32]  P. Schnable,et al.  Cloning and characterization of CER2, an Arabidopsis gene that affects cuticular wax accumulation. , 1996, The Plant cell.

[33]  B. Lemieux,et al.  Molecular cloning and characterization of the CER2 gene of Arabidopsis thaliana. , 1996, The Plant journal : for cell and molecular biology.

[34]  W. Stiekema,et al.  Molecular characterization of the CER1 gene of arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. , 1995, The Plant cell.

[35]  H. Döring,et al.  Transposon tagging of the maize Glossy2 locus with the transposable element En/Spm. , 1995, The Plant journal : for cell and molecular biology.

[36]  M. Koornneef,et al.  A Genetic and Phenotypic Description of Eceriferum (cer) Mutants in Arabidopsis thaliana , 1989 .

[37]  W. F. Thompson,et al.  Rapid isolation of high molecular weight plant DNA. , 1980, Nucleic acids research.

[38]  B. Juniper,et al.  The cuticles of plants , 1971 .

[39]  J. Joubès,et al.  Arabidopsis cuticular waxes: advances in synthesis, export and regulation. , 2013, Progress in lipid research.

[40]  S. Goodwin,et al.  Cloning and Characterization of the WAX2 Gene of Arabidopsis Involved in Cuticle Membrane and Wax Production , 2003 .

[41]  L. Kunst,et al.  Biosynthesis and secretion of plant cuticular wax. , 2003, Progress in lipid research.

[42]  Z. Ristić,et al.  Leaf cuticle and water loss in maize lines differing in dehydration avoidance , 2002 .

[43]  M. G. Holmes,et al.  Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species , 2002 .

[44]  B. Hölldobler,et al.  Chemical composition of the slippery epicuticular wax blooms on Macaranga (Euphorbiaceae) ant-plants , 2000, CHEMOECOLOGY.

[45]  M. Wolters-Arts,et al.  Complex waxes. , 2000, The Plant cell.

[46]  J. Jaworski,et al.  KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. , 1999, The Plant journal : for cell and molecular biology.

[47]  D. Post-Beittenmiller The cloned Eceriferum genes of Arabidopsis and the corresponding Glossy genes in maize , 1998 .

[48]  Wolfram Köller,et al.  The Plant Cuticle , 1991 .