Enhanced photocurrent in crystalline silicon solar cells by hybrid plasmonic antireflection coatings

Photocurrent enhancement induced by plasmonic light trapping is of great interest for photovoltaics. We design and demonstrate hybrid plasmonic antireflection coatings as an efficient light trapping strategy for broadband absorption and photocurrent enhancement in crystalline silicon solar cells. Gold nanoparticles of size ranging from 15 to 150 nm are embedded in standard SiNx antireflection coatings with a thickness of 90 nm. Through optimizing the location of tailored nanoparticles within the SiNx layer, both light scattering enhancement and near-field light concentration can be harnessed. A maximum increase of 6.3% in photocurrent is achieved for textured multi-crystalline Si solar cells with the optimum configuration.

[1]  D. Bagnall,et al.  Broadband scattering of the solar spectrum by spherical metal nanoparticles , 2012 .

[2]  K. Catchpole,et al.  Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates. , 2011, Optics express.

[3]  Carl Hägglund,et al.  Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons , 2008 .

[4]  Albert Polman,et al.  Design principles for particle plasmon enhanced solar cells , 2008 .

[5]  Daniel Derkacs,et al.  Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices , 2008 .

[6]  A. Polman,et al.  Optical impedance matching using coupled plasmonic nanoparticle arrays. , 2011, Nano letters.

[7]  Min Gu,et al.  Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells , 2012 .

[8]  Seeram Ramakrishna,et al.  Anti-reflective coatings: A critical, in-depth review , 2011 .

[9]  Min Gu,et al.  Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process , 2012 .

[10]  Min Gu,et al.  Nanoplasmonics: a frontier of photovoltaic solar cells , 2012 .

[11]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[12]  Dennis G. Hall,et al.  Absorption enhancement in silicon‐on‐insulator waveguides using metal island films , 1996 .

[13]  Jhantu Kumar Saha,et al.  Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles. , 2012, Nano letters.

[14]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[15]  E. Yu,et al.  Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles , 2005 .

[16]  Meir Orenstein,et al.  How front side plasmonic nanostructures enhance solar cell efficiency , 2011 .

[17]  G. Frens Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions , 1973 .

[18]  Thomas H. Reilly,et al.  Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics , 2008 .

[19]  Carl Hägglund,et al.  Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons , 2008 .

[20]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[21]  B. Jia,et al.  Simultaneous broadband light trapping and fill factor enhancement in crystalline silicon solar cells induced by Ag nanoparticles and nanoshells. , 2012, Optics express.

[22]  A. Burger,et al.  Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes , 2007 .

[23]  M. Green,et al.  Plasmonics for photovoltaic applications , 2010 .

[24]  M. Natan,et al.  Seeding of Colloidal Au Nanoparticle Solutions. 2. Improved Control of Particle Size and Shape , 2000 .