On conditions for uniqueness in sparse phase retrieval

The phase retrieval problem has a long history and is an important problem in many areas of optics. Theoretical understanding of phase retrieval is still limited and fundamental questions such as uniqueness and stability of the recovered solution are not yet fully understood. This paper provides several additions to the theoretical understanding of sparse phase retrieval. In particular we show that if the measurement ensemble can be chosen freely, as few as 4k - 1 phaseless measurements suffice to guarantee uniqueness of a k-sparse M-dimensional real solution. We also prove that 2(k2 - k + 1) Fourier magnitude measurements are sufficient under rather general conditions.

[1]  Yonina C. Eldar,et al.  Sparsity-Based Single-Shot Sub-Wavelength Coherent Diffractive Imaging , 2011 .

[2]  Gary S. Bloom,et al.  A Counterexample to a Theorem of S. Piccard , 1977, J. Comb. Theory, Ser. A.

[3]  Yonina C. Eldar,et al.  Sparsity Constrained Nonlinear Optimization: Optimality Conditions and Algorithms , 2012, SIAM J. Optim..

[4]  Gitta Kutyniok,et al.  1 . 2 Sparsity : A Reasonable Assumption ? , 2012 .

[5]  Rick P. Millane,et al.  Phase retrieval in crystallography and optics , 1990 .

[6]  Robert W. Harrison,et al.  Phase problem in crystallography , 1993 .

[7]  Yonina C. Eldar,et al.  Phase Retrieval: Stability and Recovery Guarantees , 2012, ArXiv.

[8]  Lei Tian,et al.  Compressive Phase Retrieval , 2011 .

[9]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[10]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[11]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[12]  R. Balan,et al.  On signal reconstruction without phase , 2006 .

[13]  Dustin G. Mixon,et al.  Saving phase: Injectivity and stability for phase retrieval , 2013, 1302.4618.

[14]  S. Sastry,et al.  Compressive Phase Retrieval From Squared Output Measurements Via Semidefinite Programming , 2011, 1111.6323.

[15]  Yonina C. Eldar,et al.  GESPAR: Efficient Phase Retrieval of Sparse Signals , 2013, IEEE Transactions on Signal Processing.

[16]  Martin Vetterli,et al.  Phase Retrieval for Sparse Signals: Uniqueness Conditions , 2013, ArXiv.

[17]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[18]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[19]  Yonina C. Eldar,et al.  Sparsity Based Sub-wavelength Imaging with Partially Incoherent Light via Quadratic Compressed Sensing References and Links , 2022 .

[20]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[21]  L. Ciric,et al.  A Counterexample to a Theorem of Xu , 1997 .

[22]  Xiaodong Li,et al.  Sparse Signal Recovery from Quadratic Measurements via Convex Programming , 2012, SIAM J. Math. Anal..