Chaperoned ubiquitylation--crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex.

[1]  C. Fan,et al.  A foldable CFTRΔF508 biogenic intermediate accumulates upon inhibition of the Hsc70–CHIP E3 ubiquitin ligase , 2004, The Journal of cell biology.

[2]  C. Patterson,et al.  Ubiquitylation of Neuronal Nitric-oxide Synthase by CHIP, a Chaperone-dependent E3 Ligase* , 2004, Journal of Biological Chemistry.

[3]  C. Pickart,et al.  Ubiquitin: structures, functions, mechanisms. , 2004, Biochimica et biophysica acta.

[4]  L. Nie,et al.  Notch-Induced E2A Degradation Requires CHIP and Hsc70 as Novel Facilitators of Ubiquitination , 2004, Molecular and Cellular Biology.

[5]  K. Nakayama,et al.  U‐box protein carboxyl terminus of Hsc70‐interacting protein (CHIP) mediates poly‐ubiquitylation preferentially on four‐repeat Tau and is involved in neurodegeneration of tauopathy , 2004, Journal of neurochemistry.

[6]  T. Hoppe,et al.  Regulation of the Myosin-Directed Chaperone UNC-45 by a Novel E3/E4-Multiubiquitylation Complex in C. elegans , 2004, Cell.

[7]  D. Barford,et al.  Getting into position: the catalytic mechanisms of protein ubiquitylation. , 2004, The Biochemical journal.

[8]  Zhijian J. Chen,et al.  The novel functions of ubiquitination in signaling. , 2004, Current opinion in cell biology.

[9]  John Hardy,et al.  CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation , 2004 .

[10]  Steven P. Gygi,et al.  CHIP-Hsc70 Complex Ubiquitinates Phosphorylated Tau and Enhances Cell Survival* , 2004, Journal of Biological Chemistry.

[11]  M. Mayer,et al.  Dimerization of the Human E3 Ligase CHIP via a Coiled-coil Domain Is Essential for Its Activity* , 2004, Journal of Biological Chemistry.

[12]  Xin-Yuan Fu,et al.  CHIP Mediates Degradation of Smad Proteins and Potentially Regulates Smad-Induced Transcription , 2004, Molecular and Cellular Biology.

[13]  W. Sessa,et al.  Chaperone-dependent Regulation of Endothelial Nitric-oxide Synthase Intracellular Trafficking by the Co-chaperone/Ubiquitin Ligase CHIP* , 2003, Journal of Biological Chemistry.

[14]  Richard S. Rogers,et al.  A conserved catalytic residue in the ubiquitin‐conjugating enzyme family , 2003, The EMBO journal.

[15]  D. Wazer,et al.  ErbB2 Degradation Mediated by the Co-chaperone Protein CHIP* , 2003, The Journal of Biological Chemistry.

[16]  N. Emmerich,et al.  Ubiquitylation of BAG-1 Suggests a Novel Regulatory Mechanism during the Sorting of Chaperone Substrates to the Proteasome* , 2002, The Journal of Biological Chemistry.

[17]  L. Neckers,et al.  Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Boris Pfander,et al.  RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO , 2002, Nature.

[19]  D. Cyr,et al.  Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. , 2002, Trends in biochemical sciences.

[20]  D. Goeddel,et al.  TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. , 2002, Molecular cell.

[21]  Y. Durocher,et al.  High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. , 2002, Nucleic acids research.

[22]  B. Bukau,et al.  Protein Turnover: A CHIP Programmed for Proteolysis , 2002, Current Biology.

[23]  Keiji Tanaka,et al.  CHIP is a chaperone‐dependent E3 ligase that ubiquitylates unfolded protein , 2001, EMBO reports.

[24]  D. Cyr,et al.  CHIP Is a U-box-dependent E3 Ubiquitin Ligase , 2001, The Journal of Biological Chemistry.

[25]  K. Nakayama,et al.  U Box Proteins as a New Family of Ubiquitin-Protein Ligases* , 2001, The Journal of Biological Chemistry.

[26]  Zhijian J. Chen,et al.  TAK1 is a ubiquitin-dependent kinase of MKK and IKK , 2001, Nature.

[27]  C. Pickart,et al.  Molecular Insights into Polyubiquitin Chain Assembly Crystal Structure of the Mms2/Ubc13 Heterodimer , 2001, Cell.

[28]  Michael J. Ellison,et al.  Crystal structure of the human ubiquitin conjugating enzyme complex, hMms2–hUbc13 , 2001, Nature Structural Biology.

[29]  Zhijian J. Chen,et al.  Activation of the IκB Kinase Complex by TRAF6 Requires a Dimeric Ubiquitin-Conjugating Enzyme Complex and a Unique Polyubiquitin Chain , 2000, Cell.

[30]  Ping Wang,et al.  Structure of a c-Cbl–UbcH7 Complex RING Domain Function in Ubiquitin-Protein Ligases , 2000, Cell.

[31]  G. Dittmar,et al.  Cell Cycle–Regulated Modification of the Ribosome by a Variant Multiubiquitin Chain , 2000, Cell.

[32]  Luis Moroder,et al.  Structure of TPR Domain–Peptide Complexes Critical Elements in the Assembly of the Hsp70–Hsp90 Multichaperone Machine , 2000, Cell.

[33]  D. N. Perkins,et al.  Probability‐based protein identification by searching sequence databases using mass spectrometry data , 1999, Electrophoresis.

[34]  A. Leonardi,et al.  TNF-mediated activation of the stress-activated protein kinase pathway: TNF receptor-associated factor 2 recruits and activates germinal center kinase related. , 1999, Journal of immunology.

[35]  P. Connell,et al.  Identification of CHIP, a Novel Tetratricopeptide Repeat-Containing Protein That Interacts with Heat Shock Proteins and Negatively Regulates Chaperone Functions , 1999, Molecular and Cellular Biology.

[36]  C. Pickart,et al.  Noncanonical MMS2-Encoded Ubiquitin-Conjugating Enzyme Functions in Assembly of Novel Polyubiquitin Chains for DNA Repair , 1999, Cell.

[37]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[38]  D. Barford,et al.  The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR‐mediated protein–protein interactions , 1998, The EMBO journal.

[39]  R. Haguenauer‐Tsapis,et al.  Ubiquitin Lys63 is involved in ubiquitination of a yeast plasma membrane protein , 1997, The EMBO journal.

[40]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[41]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[42]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[43]  G. Casari,et al.  A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. , 2004, Nature cell biology.

[44]  P. Connell,et al.  The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins , 2000, Nature Cell Biology.

[45]  D. Cyr,et al.  The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation , 2000, Nature Cell Biology.