Recent Advances in Research on Carbon Nanotube–Polymer Composites

Carbon nanotubes (CNTs) demonstrate remarkable electrical, thermal, and mechanical properties, which allow a number of exciting potential applications. In this article, we review the most recent progress in research on the development of CNT-polymer composites, with particular attention to their mechanical and electrical (conductive) properties. Various functionalization and fabrication approaches and their role in the preparation of CNT-polymer composites with improved mechanical and electrical properties are discussed. We tabulate the most recent values of Young's modulus and electrical conductivities for various CNT-polymer composites and compare the effectiveness of different processing techniques. Finally, we give a future outlook for the development of CNT-polymer composites as potential alternative materials for various applications, including flexible electrodes in displays, electronic paper, antistatic coatings, bullet-proof vests, protective clothing, and high-performance composites for aircraft and automotive industries.

[1]  J. Coleman,et al.  Towards tough, yet stiff, composites by filling an elastomer with single-walled nanotubes at very high loading levels , 2008, Nanotechnology.

[2]  A. Bhattacharyya,et al.  Melt mixing of polycarbonate with multiwalled carbon nanotubes: microscopic studies on the state of dispersion , 2004 .

[3]  M. Maugey,et al.  Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment. , 2005, Nano letters.

[4]  C. N. R. Rao,et al.  RAPID COMMUNICATION: The decoration of carbon nanotubes by metal nanoparticles , 1996 .

[5]  J. Coleman,et al.  The effect of solvent choice on the mechanical properties of carbon nanotube–polymer composites , 2007 .

[6]  L. Dai Current Chemistry: Conducting Polymers, Buckminsterfullerenes, and Carbon Nanotubes: Optoelectronic Materials Based on Architectural Diversity of the p-Conjugated Structure , 2001 .

[7]  J. Coleman,et al.  Geometric constraints in the growth of nanotube-templated polymer monolayers , 2004 .

[8]  K. Gleason,et al.  The importance of interfacial design at the carbon nanotube/polymer composite interface , 2006 .

[9]  A. Rasheed,et al.  Polymer nanotube nanocomposites: Correlating intermolecular interaction to ultimate properties , 2006 .

[10]  J. Coleman,et al.  Reinforcement of poly(vinyl chloride) and polystyrene using chlorinated polypropylene grafted carbon nanotubes , 2006 .

[11]  J. Coleman,et al.  Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites , 2002 .

[12]  C. Friedrich,et al.  Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene , 2004 .

[13]  W. Zhong,et al.  Preparation and properties of natural rubber composites reinforced with pretreated carbon nanotubes , 2008 .

[14]  V. Castaño,et al.  Improvement of Thermal and Mechanical Properties of Carbon Nanotube Composites through Chemical Functionalization , 2003 .

[15]  B. Nalini,et al.  Near-infrared photoconductive and photovoltaic devices using single-wall carbon nanotubes in conductive polymer films , 2005 .

[16]  V. Koncar,et al.  Processing and characterization of conductive yarns by coating or bulk treatment for smart textile applications , 2007 .

[17]  Feng Tao,et al.  Concise route to styryl-modified multi-walled carbon nanotubes for polystyrene matrix and enhanced mechanical properties and thermal stability of composite , 2009 .

[18]  Jose Maria Kenny,et al.  Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing , 2005 .

[19]  Petra Pötschke,et al.  Influence of injection molding parameters on the electrical resistivity of polycarbonate filled with multi-walled carbon nanotubes , 2008 .

[20]  J. Coleman,et al.  A generic organometallic approach toward ultra-strong carbon nanotube polymer composites. , 2004, Journal of the American Chemical Society.

[21]  David Hui,et al.  Carbon nanotubes for space and bio-engineering applications , 2008 .

[22]  I. Kiricsi,et al.  Multiwall carbon nanotube films surface‐doped with electroceramics for sensor applications , 2008 .

[23]  J. Coleman,et al.  Enhancement of Modulus, Strength, and Toughness in Poly(methyl methacrylate)‐Based Composites by the Incorporation of Poly(methyl methacrylate)‐Functionalized Nanotubes , 2006 .

[24]  S. R. Bakshi,et al.  Synthesis and characterization of multiwalled carbon nanotube reinforced ultra high molecular weight polyethylene composite by electrostatic spraying technique , 2007 .

[25]  C. Ma,et al.  Morphological, electrical, and mechanical properties of multiwall carbon nanotube/polysilsesquioxane composite , 2008 .

[26]  N. Kotov,et al.  Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. , 2008, Nano letters.

[27]  J. Coleman,et al.  Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites , 2006 .

[28]  Jonathan N. Coleman,et al.  Mechanical Reinforcement of Polymers Using Carbon Nanotubes , 2006 .

[29]  Joselito M. Razal,et al.  Super-tough carbon-nanotube fibres , 2003, Nature.

[30]  R. Gorga,et al.  Toughness enhancements in poly(methyl methacrylate) by addition of oriented multiwall carbon nanotubes , 2004 .

[31]  Chunyu Li,et al.  Sensors and actuators based on carbon nanotubes and their composites: A review , 2008 .

[32]  Q. Fu,et al.  Electrical properties of poly(phenylene sulfide)/multiwalled carbon nanotube composites prepared by simple mixing and compression , 2008 .

[33]  M. Prato,et al.  Organic functionalisation and characterisation of single-walled carbon nanotubes. , 2009, Chemical Society reviews.

[34]  Werner J. Blau,et al.  High Performance Nanotube‐Reinforced Plastics: Understanding the Mechanism of Strength Increase , 2004 .

[35]  J. Halpin Stiffness and Expansion Estimates for Oriented Short Fiber Composites , 1969 .

[36]  Matthieu Paillet,et al.  [2+1] cycloaddition for cross-linking SWCNTs , 2004 .

[37]  J. Coleman,et al.  The relationship between network morphology and conductivity in nanotube films , 2008 .

[38]  Yong Zhang,et al.  Functionalization of multi-wall carbon nanotubes with silane and its reinforcement on polypropylene composites , 2008 .

[39]  J. Coleman,et al.  Exfoliation in ecstasy: liquid crystal formation and concentration-dependent debundling observed for single-wall nanotubes dispersed in the liquid drug γ-butyrolactone , 2007 .

[40]  Olivier Roubeau,et al.  Electromechanical properties of nanotube–PVA composite actuator bimorphs , 2008, Nanotechnology.

[41]  Yafei Zhang,et al.  Mechanical strength improvement of polypropylene threads modified by PVA/CNT composite coatings , 2008 .

[42]  P. Dubois,et al.  From carbon nanotube coatings to high‐performance polymer nanocomposites , 2008 .

[43]  R. Dendievel,et al.  Multiwalled carbon nanotube/polymer nanocomposites: Processing and properties , 2005 .

[44]  J. Loos,et al.  Strategies for dispersing carbon nanotubes in highly viscous polymers , 2005 .

[45]  Munson-McGee,et al.  Estimation of the critical concentration in an anisotropic percolation network. , 1991, Physical review. B, Condensed matter.

[46]  Peter J. F. Harris,et al.  Carbon nanotube composites , 2004 .

[47]  Young Hee Lee,et al.  Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. , 2007, Journal of the American Chemical Society.

[48]  E. Barrera,et al.  Benzoyl peroxide initiated in situ functionalization, processing, and mechanical properties of single-walled carbon nanotube-polypropylene composite fibers , 2007 .

[49]  G. Xu,et al.  Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites , 2001 .

[50]  A. Su,et al.  One-step functionalization of carbon nanotubes by free-radical modification for the preparation of nanocomposite bipolar plates in polymer electrolyte membrane fuel cells , 2008 .

[51]  E. Thomas,et al.  Morphology and properties of melt-spun polycarbonate fibers containing single- and multi-wall carbon nanotubes , 2006 .

[52]  Daihua Zhang,et al.  Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. , 2006 .

[53]  S. Shi,et al.  Mechanical and Thermal Behavior of a Polymer Composite Reinforced with Functionalized Carbon Nanotubes , 2007 .

[54]  J. Coleman,et al.  Debundling of single-walled nanotubes by dilution: observation of large populations of individual nanotubes in amide solvent dispersions. , 2006, The journal of physical chemistry. B.

[55]  S. Advani,et al.  Advanced Polymeric Materials: Structure Property Relationships , 2003 .

[56]  Rodney S. Ruoff,et al.  Organic solvent dispersions of single-walled carbon nanotubes: Toward solutions of pristine nanotubes , 2000 .

[57]  Y. Gun’ko,et al.  Chemical functionalization of carbon nanotubes for the mechanical reinforcement of polystyrene composites , 2008, Nanotechnology.

[58]  S. Bourdo,et al.  Structural, Electrical, and Thermal Behavior of Graphite‐Polyaniline Composites with Increased Crystallinity , 2008 .

[59]  M. Panhuis,et al.  A Microscopic and Spectroscopic Study of Interactions between Carbon Nanotubes and a Conjugated Polymer , 2002 .

[60]  Changhong Liu,et al.  Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties , 2009 .

[61]  A. Hirsch Functionalization of single-walled carbon nanotubes. , 2002, Angewandte Chemie.

[62]  Rodney Andrews,et al.  Fabrication of Carbon Multiwall Nanotube/Polymer Composites by Shear Mixing , 2002 .

[63]  Zhi‐Xin Guo,et al.  Polymers containing fullerene or carbon nanotube structures , 2004 .

[64]  Ann Marie Sastry,et al.  Mechanical properties of nanotube sheets: Alterations in joint morphology and achievable moduli in manufacturable materials , 2004 .

[65]  R. Saraswathi,et al.  Polyaniline-carbon nanotube composites , 2008 .

[66]  Ben Wang,et al.  Controlled nanostructure and high loading of single-walled carbon nanotubes reinforced polycarbonate composite , 2007 .

[67]  Bodo Fiedler,et al.  Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites , 2006 .

[68]  Mark J. Schulz,et al.  Novel carbon nanotube array-reinforced laminated composite materials with higher interlaminar elastic properties , 2008 .

[69]  Jian Wu,et al.  Continuum modeling of interfaces in polymer matrix composites reinforced by carbon nanotubes , 2007 .

[70]  P. Avouris,et al.  Nanotubes for electronics. , 2000, Scientific American.

[71]  Maurizio Prato,et al.  Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites , 2002, Nature materials.

[72]  P. Pötschke,et al.  Influence of processing conditions in small‐scale melt mixing and compression molding on the resistivity and morphology of polycarbonate–MWNT composites , 2009 .

[73]  M. Panhuis Carbon nanotubes: enhancing the polymer building blocks for intelligent materials , 2006 .

[74]  Peng Liu,et al.  Modifications of carbon nanotubes with polymers , 2005 .

[75]  Kenneth A. Smith,et al.  Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates , 1999 .

[76]  Chuck Zhang,et al.  Mechanical and electrical properties of polycarbonate nanotube buckypaper composite sheets , 2008, Nanotechnology.

[77]  Werner J. Blau,et al.  Reinforcement of polymers with carbon nanotubes: The role of nanotube surface area , 2004 .

[78]  S. M. Dudkin,et al.  Dispersion of Carbon Nanotubes into Thermoplastic Polymers using Melt Mixing , 2004 .

[79]  P. Ajayan,et al.  Potential Applications of Carbon Nanotubes , 2007 .

[80]  J. Coleman,et al.  Toughening of artificial silk by incorporation of carbon nanotubes. , 2007, Biomacromolecules.

[81]  J. Zou,et al.  Preparation of a Superhydrophobic and Conductive Nanocomposite Coating from a Carbon‐Nanotube‐Conjugated Block Copolymer Dispersion , 2008 .

[82]  B. Satapathy,et al.  Structural interpretations of deformation and fracture behavior of polypropylene/multi-walled carbon nanotube composites , 2008 .

[83]  Dimitris C. Lagoudas,et al.  Mechanical properties of surface-functionalized SWCNT/epoxy composites , 2008 .

[84]  A. Celzard,et al.  Critical concentration in percolating systems containing a high-aspect-ratio filler. , 1996, Physical review. B, Condensed matter.

[85]  J. Coleman,et al.  On the factors controlling the mechanical properties of nanotube films , 2008 .

[86]  Ray H. Baughman,et al.  Towards the demonstration of actuator properties of a single carbon nanotube , 2001 .

[87]  A. Rinzler,et al.  Engineered macroporosity in single-wall carbon nanotube films. , 2009, Nano letters.

[88]  J. Coleman,et al.  Development of transparent, conducting composites by surface infiltration of nanotubes into commercial polymer films , 2009 .

[89]  E. Sano,et al.  Electrical conductivity and electromagnetic interference shielding efficiency of carbon nanotube/cellulose composite paper , 2008 .

[90]  Ricardo Izquierdo,et al.  Carbon nanotube sheets as electrodes in organic light-emitting diodes. , 2006 .

[91]  J. Coleman,et al.  High-strength, high-toughness composite fibers by swelling Kevlar in nanotube suspensions. , 2009, Small.

[92]  C. Chou,et al.  Mechanical research of carbon nanotubes/PMMA composite films , 2008 .

[93]  N. Kotov,et al.  Layer-by-layer assembled composites from multiwall carbon nanotubes with different morphologies , 2004 .

[94]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[95]  Daisuke Noguchi,et al.  Efficient H2 adsorption by nanopores of high-purity double-walled carbon nanotubes. , 2006, Journal of the American Chemical Society.

[96]  A. M. Rao,et al.  Large-scale purification of single-wall carbon nanotubes: process, product, and characterization , 1998 .

[97]  Fang Wang,et al.  Effect of acid and TETA modification on mechanical properties of MWCNTs/epoxy composites , 2008 .

[98]  Werner J. Blau,et al.  Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films , 2002 .

[99]  Ben Wang,et al.  Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites , 2004 .

[100]  Donald R Paul,et al.  Rheological behavior of multiwalled carbon nanotube/polycarbonate composites , 2002 .

[101]  Huixin He,et al.  Enhanced sensitivity for biosensors: multiple functions of DNA-wrapped single-walled carbon nanotubes in self-doped polyaniline nanocomposites. , 2006, The journal of physical chemistry. B.

[102]  M. Endo,et al.  Nanotechnology: ‘Buckypaper’ from coaxial nanotubes , 2005, Nature.

[103]  J. C. H. Affdl,et al.  The Halpin-Tsai Equations: A Review , 1976 .

[104]  P. Caillat,et al.  Stable non-covalent functionalisation of multi-walled carbon nanotubes by pyrene–polyethylene glycol through π–π stacking , 2009 .

[105]  Jian Yu,et al.  Effect of electrically inert particulate filler on electrical resistivity of polymer/multi-walled carbon nanotube composites , 2008 .

[106]  Tianxi Liu,et al.  Morphology and Mechanical Properties of Multiwalled Carbon Nanotubes Reinforced Nylon-6 Composites , 2004 .

[107]  Mark J. Schulz,et al.  Development of novel single-wall carbon nanotube–epoxy composite ply actuators , 2005 .

[108]  C. Ma,et al.  Effect of processing method on the shielding effectiveness of electromagnetic interference of MWCNT/PMMA composites , 2008 .

[109]  R. Andrews,et al.  Carbon nanotube polymer composites , 2004 .

[110]  Matthew S. Bratcher,et al.  Noncovalent and Nonspecific Molecular Interactions of Polymers with Multiwalled Carbon Nanotubes , 2005 .

[111]  X. Bian,et al.  Ultralight conductive carbon-nanotube-polymer composite. , 2007, Small.

[112]  Q. Fu,et al.  Morphological manipulation of carbon nanotube/polycarbonate/polyethylene composites by dynamic injection packing molding , 2006 .

[113]  David Tománek,et al.  Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks. , 2005, Journal of the American Chemical Society.

[114]  Stanislaus S. Wong,et al.  Covalent Surface Chemistry of Single‐Walled Carbon Nanotubes , 2005 .

[115]  W. Brittain,et al.  Conductivity and mechanical properties of well-dispersed single-wall carbon nanotube/polystyrene composite , 2006 .

[116]  Chengjun Zhou,et al.  In situ preparation and continuous fiber spinning of poly(p-phenylene benzobisoxazole) composites with oligo-hydroxyamide-functionalized multi-walled carbon nanotubes , 2008 .

[117]  Angel Rubio,et al.  Single‐Walled Carbon Nanotube–Polymer Composites: Strength and Weakness , 2000 .

[118]  Liming Dai,et al.  Chemistry of Carbon Nanotubes , 2003 .

[119]  A. Rasheed,et al.  Polymer‐nanofiber composites: Enhancing composite properties by nanofiber oxidation , 2006 .

[120]  Zhiyong Gao,et al.  Microstructure and Mechanical Properties of Carboxylated Carbon Nanotubes/Poly(L-lactic acid) Composite , 2008 .

[121]  Tzong‐Ming Wu,et al.  Preparation and characterization of conductive carbon nanotube–polystyrene nanocomposites using latex technology , 2008 .

[122]  A. Rinzler,et al.  Carbon nanotube actuators , 1999, Science.

[123]  N. Lun,et al.  Formation of gold nanoparticles supported on carbon nanotubes by using an electroless plating method , 2005 .

[124]  H. Lee,et al.  Semimetallic Transport in Nanocomposites Derived from Grafting of Linear and Hyperbranched Poly(phenylene sulfide)s onto the Surface of Functionalized Multi-Walled Carbon Nanotubes , 2008 .

[125]  R. Whitby,et al.  Geometric control and tuneable pore size distribution of buckypaper and buckydiscs , 2008 .

[126]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[127]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[128]  Y. Hernández,et al.  Preparation of buckypaper-copper composites and investigation of their conductivity and mechanical properties. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[129]  P. Théato,et al.  Preparation of transparent conductive multilayered films using active pentafluorophenyl ester modified multiwalled carbon nanotubes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[130]  Chuck Zhang,et al.  Fire retardancy of a buckypaper membrane , 2008 .

[131]  George R Hansen What we dreamt as children- : How conductive polymers are bringing our dreams to reality , 2006 .

[132]  E. Bekyarova,et al.  Chemical engineering of the single-walled carbon nanotube-nylon 6 interface. , 2006, Journal of the American Chemical Society.

[133]  Satish Kumar,et al.  Properties and Structure of Nitric Acid Oxidized Single Wall Carbon Nanotube Films , 2004 .

[134]  P. Dubois,et al.  Functionalization of carbon nanotubes by atomic nitrogen formed in a microwave plasma Ar + N2 and subsequent poly(ε-caprolactone) grafting , 2007 .

[135]  S. Roth,et al.  Synthesis and characterization of carbon nanotube-conducting polymer thin films , 2004 .

[136]  Chengjun Zhou,et al.  Enhanced conductivity in polybenzoxazoles doped with carboxylated multi-walled carbon nanotubes , 2008 .

[137]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[138]  Pavel Nikolaev,et al.  From Fullerenes to Nanotubes , 1996 .

[139]  M. Moniruzzaman,et al.  Polymer Nanocomposites Containing Carbon Nanotubes , 2006 .

[140]  M. Arroyo,et al.  Carbon nanotubes provide self-extinguishing grade to silicone-based foams , 2008 .

[141]  David L. Carroll,et al.  Polymer–nanotube composites for transparent, conducting thin films ☆ , 2005 .

[142]  A. Bhattacharyya,et al.  Melt mixing of polycarbonate/multi-wall carbon nanotube composites , 2003 .

[143]  J. Coleman,et al.  Strong, Tough, Electrospun Polymer–Nanotube Composite Membranes with Extremely Low Density , 2008 .

[144]  Bin Zhao,et al.  Continuous spinning of a single-walled carbon nanotube-nylon composite fiber. , 2005, Journal of the American Chemical Society.

[145]  Haihui Ye,et al.  Electrospinning of Continuous Carbon Nanotube‐Filled Nanofiber Yarns , 2003 .

[146]  J. Tour,et al.  Covalent chemistry of single-wall carbon nanotubes , 2002 .

[147]  J. Bahr,et al.  Water‐Based Single‐Walled‐Nanotube‐Filled Polymer Composite with an Exceptionally Low Percolation Threshold , 2004 .

[148]  Tongxi Yu,et al.  Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes , 2003 .

[149]  A. T. Ponomarenko,et al.  Electrical properties of composites based on conjugated polymers and conductive fillers , 2003 .

[150]  H. Brünig,et al.  Orientation of multiwalled carbon nanotubes in composites with polycarbonate by melt spinning , 2005 .

[151]  V. Castaño,et al.  Carbon nanotube-polymer nanocomposites: The role of interfaces , 2005 .

[152]  R. Andrews,et al.  Multiwall carbon nanotubes: synthesis and application. , 2002, Accounts of chemical research.

[153]  Takuzo Aida,et al.  Dramatic effect of dispersed carbon nanotubes on the mechanical and electroconductive properties of polymers derived from ionic liquids. , 2006, Small.

[154]  T. Chou,et al.  Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization , 2002 .

[155]  D. Resasco,et al.  Silica supported single‐walled carbon nanotubes as a modifier in polyethylene composites , 2008 .

[156]  Jaeha Shin,et al.  Ultra‐thin and Conductive Nanomembrane Arrays for Nanomechanical Transducers , 2008 .

[157]  S. Eisebitt,et al.  Statistical analysis of the electronic structure of single-wall carbon nanotubes , 2000 .

[158]  M. Sanjuán,et al.  The influence of single-walled carbon nanotube functionalization on the electronic properties of their polyaniline composites , 2008 .

[159]  A. Dufresne,et al.  Processing and characterization of carbon nanotube/poly(styrene-co-butyl acrylate) nanocomposites , 2002 .

[160]  Heli Jantunen,et al.  Inkjet printing of transparent and conductive patterns of single‐walled carbon nanotubes and PEDOT‐PSS composites , 2007 .

[161]  M. Prato,et al.  Chemistry of carbon nanotubes. , 2006, Chemical reviews.

[162]  C. Bittencourt,et al.  Functionalization of MWCNTs with atomic nitrogen. , 2009, Micron.

[163]  Frank T. Fisher,et al.  Reinforcement mechanisms in MWCNT-filled polycarbonate , 2006 .

[164]  E. Bekyarova,et al.  Incorporation of highly dispersed single-walled carbon nanotubes in a polyimide matrix , 2006 .

[165]  Maurizio Prato,et al.  Multipurpose organically modified carbon nanotubes: from functionalization to nanotube composites. , 2008, Journal of the American Chemical Society.

[166]  S. Eisebitt,et al.  Electronic structure of single-wall carbon nanotubes studied by resonant inelastic X-ray scattering , 1998 .

[167]  Elizabeth C. Dickey,et al.  Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites , 2000 .

[168]  H. Jin,et al.  Thermal Properties of Poly(ε-Caprolactone)/Multiwalled Carbon Nanotubes Composites , 2008 .

[169]  J. Coleman,et al.  Efficient dispersion and exfoliation of single-walled nanotubes in 3-aminopropyltriethoxysilane and its derivatives , 2008, Nanotechnology.

[170]  R. Ruoff,et al.  Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties , 2000, Physical review letters.

[171]  Zhi Yang,et al.  Preparation and shear properties of carbon nanotubes/poly(butyl methacrylate) hybrid material , 2008 .

[172]  Yiu-Wing Mai,et al.  Dispersion and alignment of carbon nanotubes in polymer matrix: A review , 2005 .

[173]  J. Coleman,et al.  Kevlar coated carbon nanotubes for reinforcement of polyvinylchloride , 2008 .

[174]  Eric A. Grulke,et al.  MULTIWALLED CARBON NANOTUBE POLYMER COMPOSITES: SYNTHESIS AND CHARACTERIZATION OF THIN FILMS , 2002 .

[175]  K. Watson,et al.  Transparent, flexible, conductive carbon nanotube coatings for electrostatic charge mitigation , 2005 .

[176]  Karen Lozano,et al.  Reinforcing Epoxy Polymer Composites Through Covalent Integration of Functionalized Nanotubes , 2004 .

[177]  Joselito M. Razal,et al.  Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives , 2003 .

[178]  W. Lu,et al.  Nanostructured thin films made by dewetting method of layer-by-layer assembly. , 2007, Nano letters.

[179]  M. Panhuis,et al.  Reinforcement of macroscopic carbon nanotube structures by polymer intercalation: The role of polymer molecular weight and chain conformation , 2005 .

[180]  M. Shaffer,et al.  Crystallization of Carbon Nanotube and Nanofiber Polypropylene Composites , 2003 .

[181]  Xinyun Liu,et al.  ELECTROMECHANICAL BEHAVIOR OF CARBON NANOTUBES-CONDUCTING POLYMER FILMS , 2006 .

[182]  Ya-Li Li,et al.  Mechanical properties of continuously spun fibers of carbon nanotubes. , 2005, Nano letters.

[183]  M. Schulz,et al.  Plasma coating of carbon nanofibers for enhanced dispersion and interfacial bonding in polymer composites , 2003 .

[184]  J. Coleman,et al.  Reinforcement of polymers with carbon nanotubes. The role of an ordered polymer interfacial region. Experiment and modeling , 2006 .

[185]  Gangbing Song,et al.  Strain monitoring in glass fiber reinforced composites embedded with carbon nanopaper sheet using Fiber Bragg Grating (FBG) sensors , 2009 .

[186]  P. Poulin,et al.  Macroscopic fibers and ribbons of oriented carbon nanotubes. , 2000, Science.

[187]  Liangbing Hu,et al.  A method of printing carbon nanotube thin films , 2006 .

[188]  Andreas Hirsch,et al.  Doping of single-walled carbon nanotube bundles by Brønsted acids , 2003 .

[189]  M. Maugey,et al.  Influence of surface functionalization on the thermal and electrical properties of nanotube-PVA composites , 2008 .

[190]  Petra Pötschke,et al.  Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites , 2004 .

[191]  J. Coleman,et al.  Towards Solutions of Single‐Walled Carbon Nanotubes in Common Solvents , 2008 .

[192]  P. Ajayan,et al.  Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin—Nanotube Composite , 1994, Science.

[193]  C. Böttcher,et al.  High population of individualized SWCNTs through the adsorption of water-soluble perylenes. , 2009, Journal of the American Chemical Society.

[194]  V. G. Shevchenko,et al.  Isotactic and syndiotactic polypropylene/multi-wall carbon nanotube composites: synthesis and properties , 2008, Journal of Materials Science.

[195]  Sudhanshu Srivastava,et al.  Composite Layer-by-Layer (LBL) assembly with inorganic nanoparticles and nanowires. , 2008, Accounts of chemical research.

[196]  K. Winey,et al.  Cellular structures of carbon nanotubes in a polymer matrix improve properties relative to composites with dispersed nanotubes , 2008 .

[197]  G. E. Gadd,et al.  Mechanical Properties of Biodegradable Polyhydroxyalkanoates/Single Wall Carbon Nanotube Nanocomposite Films , 2008 .

[198]  W. Blau,et al.  A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres , 2004 .

[199]  Yufeng Ma,et al.  The electronic role of DNA-functionalized carbon nanotubes: efficacy for in situ polymerization of conducting polymer nanocomposites. , 2008, Journal of the American Chemical Society.

[200]  G. Boiteux,et al.  Electrical and mechanical properties of carbon nanotube/ultrahigh-molecular-weight polyethylene composites prepared by a filler prelocalization method† , 2007 .

[201]  M. Meyyappan,et al.  Gas Permeability of a Buckypaper Membrane , 2003 .

[202]  N. Sahoo,et al.  Effect of Functionalized Carbon Nanotubes on Molecular Interaction and Properties of Polyurethane Composites , 2006 .

[203]  H. Wagner,et al.  Mechanical Properties of Functionalized Single‐Walled Carbon‐Nanotube/Poly(vinyl alcohol) Nanocomposites , 2005 .

[204]  Hsu-Chiang Kuan,et al.  Molecular motion, morphology, and thermal properties of multiwall carbon nanotube/polysilsesquioxane composite , 2008 .

[205]  Zhiyong Tang,et al.  Integration of Conductivity, Transparency, and Mechanical Strength into Highly Homogeneous Layer-by-Layer Composites of Single-Walled Carbon Nanotubes for Optoelectronics , 2007 .

[206]  U. Sundararaj,et al.  Big returns from small fibers: A review of polymer/carbon nanotube composites , 2004 .

[207]  Jun Jin,et al.  A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes , 2007 .

[208]  R. Smalley,et al.  Synthesis, Structure, and Properties of PBO/SWNT Composites & , 2002 .

[209]  M. Saboungi,et al.  Protein-functionalized carbon nanotube-polymer composites , 2005 .

[210]  Zhi‐Xin Guo,et al.  Fabrication and Characterization of Soluble Multi‐Walled Carbon Nanotubes Reinforced P(MMA‐co‐EMA) Composites , 2004 .

[211]  S. Roth,et al.  Melt Mixing as Method to Disperse Carbon Nanotubes into Thermoplastic Polymers , 2005 .