The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator

We analyze a nonlocal diffusion operator having as special cases the fractional Laplacian and fractional differential operators that arise in several applications. In our analysis, a nonlocal vector calculus is exploited to define a weak formulation of the nonlocal problem. We demonstrate that, when sufficient conditions on certain kernel functions hold, the solution of the nonlocal equation converges to the solution of the fractional Laplacian equation on bounded domains as the nonlocal interactions become infinite. We also introduce a continuous Galerkin finite element discretization of the nonlocal weak formulation and we derive a priori error estimates. Through several numerical examples we illustrate the theoretical results and we show that by solving the nonlocal problem it is possible to obtain accurate approximations of the solutions of fractional differential equations circumventing the problem of treating infinite-volume constraints.

[1]  G. Burton Sobolev Spaces , 2013 .

[2]  Jean-Michel Morel,et al.  Image Denoising Methods. A New Nonlocal Principle , 2010, SIAM Rev..

[3]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[4]  Qiang Du,et al.  Mathematical Models and Methods in Applied Sciences c ○ World Scientific Publishing Company Sandia National Labs SAND 2010-8353J A NONLOCAL VECTOR CALCULUS, NONLOCAL VOLUME-CONSTRAINED PROBLEMS, AND NONLOCAL BALANCE LAWS , 2022 .

[5]  J. Liang,et al.  Hybrid symbolic and numerical simulation studies of time-fractional order wave-diffusion systems , 2006 .

[6]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[7]  Marcus Webb,et al.  Analysis and Approximation of a Fractional Dierential Equation , 2012 .

[8]  László Lovász,et al.  Limits of dense graph sequences , 2004, J. Comb. Theory B.

[9]  Peter P. Valko,et al.  Numerical inversion of 2-D Laplace transforms applied to fractional diffusion equations , 2005 .

[10]  Yangquan Chen,et al.  Matrix approach to discrete fractional calculus II: Partial fractional differential equations , 2008, J. Comput. Phys..

[11]  J. P. Roop Variational Solution of the Fractional Advection Dispersion Equation , 2004 .

[12]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .

[13]  G. Fix,et al.  Least squares finite-element solution of a fractional order two-point boundary value problem , 2004 .

[14]  Olaf Weckner,et al.  The effect of long-range forces on the dynamics of a bar , 2005 .

[15]  Guy Gilboa,et al.  Nonlocal Linear Image Regularization and Supervised Segmentation , 2007, Multiscale Model. Simul..

[16]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[17]  Santos B. Yuste,et al.  Weighted average finite difference methods for fractional diffusion equations , 2004, J. Comput. Phys..

[18]  Luc Mieussens,et al.  Analysis of an Asymptotic Preserving Scheme for Linear Kinetic Equations in the Diffusion Limit , 2009, SIAM J. Numer. Anal..

[19]  Xavier Ros-Oton,et al.  The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary , 2012, 1207.5985.

[20]  Richard B. Lehoucq,et al.  CLASSICAL, NONLOCAL, AND FRACTIONAL DIFFUSION EQUATIONS ON BOUNDED DOMAINS , 2011 .

[21]  Florin Bobaru,et al.  The peridynamic formulation for transient heat conduction , 2010 .

[22]  Shyam L. Kalla,et al.  Numerical treatment of fractional heat equations , 2008 .

[23]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[24]  M. T. Barlow,et al.  Non-local dirichlet forms and symmetric jump processes , 2006 .

[25]  Vickie E. Lynch,et al.  Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model , 2001 .

[26]  Bruce J. West,et al.  Lévy dynamics of enhanced diffusion: Application to turbulence. , 1987, Physical review letters.

[27]  Stevens,et al.  Self-similar transport in incomplete chaos. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[29]  Peter W. Bates,et al.  An Integrodifferential Model for Phase Transitions: Stationary Solutions in Higher Space Dimensions , 1999 .

[30]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[31]  Bruno Volzone,et al.  Comparison and regularity results for the fractional Laplacian via symmetrization methods , 2011, 1106.0997.

[32]  Richard F. Bass,et al.  Symmetric jump processes: Localization, heat kernels and convergence , 2008, 0803.3164.

[33]  Lorraine G. Olson,et al.  An efficient finite element method for treating singularities in Laplace's equation , 1991 .

[34]  Mikhail Belkin,et al.  On Learning with Integral Operators , 2010, J. Mach. Learn. Res..

[35]  Paul C. Fife,et al.  Some Nonclassical Trends in Parabolic and Parabolic-like Evolutions , 2003 .

[36]  L. Shampine Vectorized adaptive quadrature in MATLAB , 2008 .

[37]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[38]  M. Meerschaert,et al.  VECTOR GRÜNWALD FORMULA FOR FRACTIONAL DERIVATIVES , 2004 .

[39]  X. Chen,et al.  Continuous and discontinuous finite element methods for a peridynamics model of mechanics , 2011 .

[40]  C. Bardos,et al.  DIFFUSION APPROXIMATION AND COMPUTATION OF THE CRITICAL SIZE , 1984 .

[41]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[42]  Stanley Osher,et al.  Image Recovery via Nonlocal Operators , 2010, J. Sci. Comput..

[43]  Fawang Liu,et al.  Error analysis of an explicit finite difference approximation for the space fractional diffusion equation with insulated ends , 2005 .