A Survey on Methods for Modeling and Analyzing Integrated Biological Networks

Understanding how cellular systems build up integrated responses to their dynamically changing environment is one of the open questions in Systems Biology. Despite their intertwinement, signaling networks, gene regulation and metabolism have been frequently modeled independently in the context of well-defined subsystems. For this purpose, several mathematical formalisms have been developed according to the features of each particular network under study. Nonetheless, a deeper understanding of cellular behavior requires the integration of these various systems into a model capable of capturing how they operate as an ensemble. With the recent advances in the "omics” technologies, more data is becoming available and, thus, recent efforts have been driven toward this integrated modeling approach. We herein review and discuss methodological frameworks currently available for modeling and analyzing integrated biological networks, in particular metabolic, gene regulatory and signaling networks. These include network-based methods and Chemical Organization Theory, Flux-Balance Analysis and its extensions, logical discrete modeling, Petri Nets, traditional kinetic modeling, Hybrid Systems and stochastic models. Comparisons are also established regarding data requirements, scalability with network size and computational burden. The methods are illustrated with successful case studies in large-scale genome models and in particular subsystems of various organisms.

[1]  Guy Karlebach,et al.  Modelling and analysis of gene regulatory networks , 2008, Nature Reviews Molecular Cell Biology.

[2]  O Mason,et al.  Graph theory and networks in Biology. , 2006, IET systems biology.

[3]  Peter Dittrich,et al.  Chemical Organizations in the Central Sugar Metabolism of Escherichia coli , 2007 .

[4]  Prodromos Daoutidis,et al.  Singular perturbation modeling of nonlinear processes with nonexplicit time-scale multiplicity , 1998 .

[5]  Eberhard O. Voit,et al.  Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists , 2000 .

[6]  Muruhan Rathinam,et al.  Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method , 2003 .

[7]  Naresh N. Nandola,et al.  Hybrid system identification using a structural approach and its model based control : An experimental validation , 2009 .

[8]  Jared E. Toettcher,et al.  Stochastic Gene Expression in a Lentiviral Positive-Feedback Loop: HIV-1 Tat Fluctuations Drive Phenotypic Diversity , 2005, Cell.

[9]  Wolfgang Reisig Petri Nets: An Introduction , 1985, EATCS Monographs on Theoretical Computer Science.

[10]  Jörg Stelling,et al.  Elementary flux modes – state-of-the-art implementation and scope of application , 2007, BMC Systems Biology.

[11]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[12]  W. Bentley,et al.  Stochastic kinetic analysis of the Escherichia coli stress circuit using σ32-targeted antisense , 2001 .

[13]  U. Sauer,et al.  Getting Closer to the Whole Picture , 2007, Science.

[14]  Denis Thieffry,et al.  Qualitative Petri Net Modelling of Genetic Networks , 2006, Trans. Comp. Sys. Biology.

[15]  John L. Casti,et al.  The theory of metabolism-repair systems , 1988 .

[16]  I. Chou,et al.  Recent developments in parameter estimation and structure identification of biochemical and genomic systems. , 2009, Mathematical biosciences.

[17]  Özlem Demir,et al.  An integrated model of glucose and galactose metabolism regulated by the GAL genetic switch , 2006, Comput. Biol. Chem..

[18]  Monika Heiner,et al.  Model Validation of Biological Pathways Using Petri Nets - Demonstrated for Apoptosis , 2003, CMSB.

[19]  J. Bailey,et al.  Effects of spatiotemporal variations on metabolic control: approximate analysis using (log)linear kinetic models. , 1997, Biotechnology and bioengineering.

[20]  J. Keasling,et al.  Mathematical Model of the lac Operon: Inducer Exclusion, Catabolite Repression, and Diauxic Growth on Glucose and Lactose , 1997, Biotechnology progress.

[21]  Markus J. Herrgård,et al.  A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology , 2008, Nature Biotechnology.

[22]  Marta Z. Kwiatkowska,et al.  Probabilistic model checking of complex biological pathways , 2008, Theor. Comput. Sci..

[23]  Peter Dittrich,et al.  Analyzing molecular reaction networks , 2006, Molecular biotechnology.

[24]  A. Arkin,et al.  Stochastic mechanisms in gene expression. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Christoph Kaleta,et al.  Computing chemical organizations in biological networks , 2008, Bioinform..

[26]  Douglas B. Kell,et al.  System Modeling in Cell Biology From Concepts to Nuts and Bolts , 2005 .

[27]  R. Sharan,et al.  A genome-scale computational study of the interplay between transcriptional regulation and metabolism , 2007, Molecular systems biology.

[28]  Johan Paulsson,et al.  Models of stochastic gene expression , 2005 .

[29]  Monika Heiner,et al.  Petri Net Based Model Validation in Systems Biology , 2004, ICATPN.

[30]  A. Sorribas,et al.  Cooperativity and saturation in biochemical networks: A saturable formalism using Taylor series approximations , 2007, Biotechnology and Bioengineering.

[31]  A Babloyantz,et al.  Chemical instabilities of “all‐or‐none” type in β ‐ galactosidase induction and active transport , 1972, FEBS letters.

[32]  Wolfgang Marwan,et al.  Reconstructing the regulatory network controlling commitment and sporulation in Physarum polycephalum based on hierarchical Petri Net modelling and simulation. , 2005, Journal of theoretical biology.

[33]  D. Ramkrishna,et al.  A hybrid model of anaerobic E. coli GJT001: Combination of elementary flux modes and cybernetic variables , 2008, Biotechnology progress.

[34]  Ioannis P. Androulakis,et al.  On the Potential for Integrating Gene Expression and Metabolic Flux Data , 2008 .

[35]  Paulien Hogeweg,et al.  The Effect of Stochasticity on the Lac Operon: An Evolutionary Perspective , 2007, PLoS Comput. Biol..

[36]  R. Albert Network Inference, Analysis, and Modeling in Systems Biology , 2007, The Plant Cell Online.

[37]  Lennart Ljung,et al.  On global identifiability for arbitrary model parametrizations , 1994, Autom..

[38]  Claudio Cobelli,et al.  Global identifiability of nonlinear models of biological systems , 2001, IEEE Transactions on Biomedical Engineering.

[39]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[40]  Sabine Mondié,et al.  Bifurcation analysis of a biochemical network , 2006 .

[41]  E. Voit,et al.  Regulation of glycolysis in Lactococcus lactis: an unfinished systems biological case study. , 2006, Systems biology.

[42]  K. F. Tipton,et al.  Biochemical systems analysis: A study of function and design in molecular biology , 1978 .

[43]  Albert Goldbeter,et al.  Circadian rhythms and molecular noise. , 2006, Chaos.

[44]  Denis Thieffry,et al.  Qualitative Modelling of Genetic Networks: From Logical Regulatory Graphs to Standard Petri Nets , 2004, ICATPN.

[45]  R. Thomas,et al.  Boolean formalization of genetic control circuits. , 1973, Journal of theoretical biology.

[46]  A. Quarteroni Mathematical Models in Science and Engineering , 2009 .

[47]  C. Belta,et al.  Analysis of lactose metabolism in E. Coli using reachability analysis of hybrid systems. , 2007, IET systems biology.

[48]  B. Palsson,et al.  In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data , 2001, Nature Biotechnology.

[49]  Markus J. Herrgård,et al.  Integrating high-throughput and computational data elucidates bacterial networks , 2004, Nature.

[50]  B. Palsson,et al.  Constraints-based models: regulation of gene expression reduces the steady-state solution space. , 2003, Journal of theoretical biology.

[51]  Hiroshi Matsuno,et al.  Boundary Formation by Notch Signaling in Drosophila Multicellular Systems: Experimental Observations and Gene Network Modeling by Genomic Object Net , 2002, Pacific Symposium on Biocomputing.

[52]  B. Palsson,et al.  Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. , 2000, Biotechnology and bioengineering.

[53]  Monika Heiner,et al.  Application of Petri net based analysis techniques to signal transduction pathways , 2006, BMC Bioinformatics.

[54]  Fariza Tahi,et al.  Modeling and Simulation with Hybrid Functional Petri Nets of the Role of Interleukin-6 in Human Early Haematopoiesis , 2006, Pacific Symposium on Biocomputing.

[55]  Erwin P. Gianchandani,et al.  Correction: Dynamic Analysis of Integrated Signaling, Metabolic, and Regulatory Networks , 2008, PLoS Computational Biology.

[56]  J. Onuchic,et al.  Molecular level stochastic model for competence cycles in Bacillus subtilis , 2007, Proceedings of the National Academy of Sciences.

[57]  Li Chen,et al.  Modelling and simulation of signal transductions in an apoptosis pathway by using timed Petri nets , 2007, Journal of Biosciences.

[58]  W. Bentley,et al.  Stochastic kinetic analysis of the Escherichia coli stress circuit using sigma(32)-targeted antisense. , 2001, Biotechnology and bioengineering.

[59]  Atsushi Doi,et al.  Biopathways representation and simulation on hybrid functional Petri net , 2003, Silico Biol..

[60]  Eberhard O. Voit,et al.  Integrative biological systems modeling: challenges and opportunities , 2009, Frontiers of Computer Science in China.

[61]  Michael C Mackey,et al.  Influence of catabolite repression and inducer exclusion on the bistable behavior of the lac operon. , 2004, Biophysical journal.

[62]  Vipul Periwal,et al.  System Modeling in Cellular Biology: From Concepts to Nuts and Bolts , 2006 .

[63]  Brian Munsky,et al.  The Finite State Projection Approach for the Analysis of Stochastic Noise in Gene Networks , 2008, IEEE Transactions on Automatic Control.

[64]  E. Klipp,et al.  Integrative model of the response of yeast to osmotic shock , 2005, Nature Biotechnology.

[65]  R. Heinrich,et al.  The Regulation of Cellular Systems , 1996, Springer US.

[66]  S. Hohmann Osmotic Stress Signaling and Osmoadaptation in Yeasts , 2002, Microbiology and Molecular Biology Reviews.

[67]  Ádám M. Halász,et al.  Understanding the Bacterial Stringent Response Using Reachability Analysis of Hybrid Systems , 2004, HSCC.

[68]  Aurélien Naldi,et al.  Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle , 2006, ISMB.

[69]  Q. Ouyang,et al.  The yeast cell-cycle network is robustly designed. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[70]  M. Maurin,et al.  REVIEW ARTICLE doi: 10.1111/j.1472-8206.2008.00633.x The Hill equation: a review of its capabilities in pharmacological modelling , 2008 .

[71]  Peter Dittrich,et al.  Chemical organizations in atmospheric photochemistries—A new method to analyze chemical reaction networks , 2007 .

[72]  C. Gillespie Moment-closure approximations for mass-action models. , 2009, IET systems biology.

[73]  Peter Dittrich,et al.  Chemical Organisation Theory , 2007, Bulletin of mathematical biology.

[74]  V. Schachter,et al.  Genome-scale models of bacterial metabolism: reconstruction and applications , 2008, FEMS microbiology reviews.

[75]  John J Tyson,et al.  Exploring the roles of noise in the eukaryotic cell cycle , 2009, Proceedings of the National Academy of Sciences.

[76]  M. Reuss,et al.  In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical model. , 1997, Biotechnology and bioengineering.

[77]  Eberhard O. Voit,et al.  Hybrid Modeling in Biochemical Systems Theory by Means of Functional Petri Nets , 2009, J. Bioinform. Comput. Biol..

[78]  Karl Henrik Johansson,et al.  A hybrid systems framework for cellular processes. , 2005, Bio Systems.

[79]  Jason A. Papin,et al.  Genome-scale microbial in silico models: the constraints-based approach. , 2003, Trends in biotechnology.

[80]  Barbara M. Bakker,et al.  Systems biology towards life in silico: mathematics of the control of living cells , 2009, Journal of mathematical biology.

[81]  Milan van Hoek,et al.  In silico evolved lac operons exhibit bistability for artificial inducers, but not for lactose. , 2006, Biophysical journal.

[82]  Axel Kowald,et al.  Systems Biology in Practice: Concepts, Implementation and Application , 2005 .

[83]  H. Kröger,et al.  [Protein synthesis]. , 1974, Fortschritte der Medizin.

[84]  Gérard Bloch,et al.  Switched and PieceWise Nonlinear Hybrid System Identification , 2008, HSCC.

[85]  Steffen Klamt,et al.  Hypergraphs and Cellular Networks , 2009, PLoS Comput. Biol..

[86]  J. Stelling,et al.  Genome‐scale metabolic networks , 2009, Wiley interdisciplinary reviews. Systems biology and medicine.

[87]  Florian Centler,et al.  Theorie chemischer Organisationen angewendet auf Infektionsmodelle Chemical Organization Theory Applied to Virus Dynamics , 2006 .

[88]  Barbara M. Bakker,et al.  Unraveling the complexity of flux regulation: A new method demonstrated for nutrient starvation in Saccharomyces cerevisiae , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[89]  Andrea Sackmann,et al.  Modularization of biochemical networks based on classification of Petri net t-invariants , 2008, BMC Bioinformatics.

[90]  Abhijit Chatterjee,et al.  Time accelerated Monte Carlo simulations of biological networks using the binomial r-leap method , 2005, Bioinform..

[91]  Maria Pia Saccomani,et al.  Parameter Identifiability of Nonlinear Biological Systems , 2003, POSTA.

[92]  John J. Tyson,et al.  A Quantitative Study of the Division Cycle of Caulobacter crescentus Stalked Cells , 2007, PLoS Comput. Biol..

[93]  Peter McLaughlin,et al.  The Arrival of the Fittest , 2011 .

[94]  Badong Chen,et al.  Information Theoretical Approach to Identification of Hybrid Systems , 2008, HSCC.

[95]  D. Schneider,et al.  Qualitative simulation of the carbon starvation response in Escherichia coli. , 2006, Bio Systems.

[96]  D. Fell,et al.  A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks , 2000, Nature Biotechnology.

[97]  Denis Thieffry,et al.  Qualitative modelling of regulated metabolic pathways: application to the tryptophan biosynthesis in E.Coli , 2005, ECCB/JBI.

[98]  M. Khammash,et al.  The finite state projection algorithm for the solution of the chemical master equation. , 2006, The Journal of chemical physics.

[99]  Barbara M. Bakker,et al.  Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. , 2000, European journal of biochemistry.

[100]  Jason A. Papin,et al.  Comparison of network-based pathway analysis methods. , 2004, Trends in biotechnology.

[101]  F. Crick Central Dogma of Molecular Biology , 1970, Nature.

[102]  A. Sorribas,et al.  Mathematical formalisms based on approximated kinetic representations for modeling genetic and metabolic pathways , 2008, Biotechnology & genetic engineering reviews.

[103]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[104]  Claudine Chaouiya,et al.  Petri net modelling of biological networks , 2007, Briefings Bioinform..

[105]  E Goles,et al.  A discrete mathematical model applied to genetic regulation and metabolic networks. , 2007, Journal of microbiology and biotechnology.

[106]  F. Llaneras,et al.  Stoichiometric modelling of cell metabolism. , 2008, Journal of bioscience and bioengineering.

[107]  D. Gillespie The chemical Langevin equation , 2000 .

[108]  Monika Heiner,et al.  Application of Petri net theory for modelling and validation of the sucrose breakdown pathway in the potato tuber , 2005, Bioinform..

[109]  Bernhard O. Palsson,et al.  Matrix Formalism to Describe Functional States of Transcriptional Regulatory Systems , 2006, PLoS Comput. Biol..

[110]  Jens Timmer,et al.  Data-based identifiability analysis of non-linear dynamical models , 2007, Bioinform..

[111]  James L. Peterson,et al.  Petri Nets , 1977, CSUR.

[112]  Nan Xiao,et al.  Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli , 2008, Bioinform..

[113]  M. Reuss,et al.  In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae : I. Experimental observations. , 1997, Biotechnology and bioengineering.

[114]  Hartmann J. Genrich,et al.  Executable Petri net models for the analysis of metabolic pathways , 2001, International Journal on Software Tools for Technology Transfer.

[115]  Markus J. Herrgård,et al.  Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. , 2006, Genome research.

[116]  K. V. Venkatesh,et al.  Stochastic analysis of the GAL genetic switch in Saccharomyces cerevisiae: Modeling and experiments reveal hierarchy in glucose repression , 2008, BMC Systems Biology.

[117]  D. Noble Music of life : biology beyond the genome , 2006 .

[118]  Ashish Tiwari,et al.  Symbolic Systems Biology: Hybrid Modeling and Analysis of Biological Networks , 2004, HSCC.

[119]  B. Goodwin Oscillatory behavior in enzymatic control processes. , 1965, Advances in enzyme regulation.

[120]  Martin Vingron,et al.  A joint model of regulatory and metabolic networks , 2006, BMC Bioinformatics.

[121]  Ming Chen,et al.  Quantitative Petri net model of gene regulated metabolic networks in the cell , 2003, Silico Biol..

[122]  John Lygeros,et al.  Stochastic dynamics of genetic networks: modelling and parameter identification , 2008, Bioinform..

[123]  Leo W. Buss,et al.  “The arrival of the fittest”: Toward a theory of biological organization , 1994 .

[124]  P. Swain,et al.  Intrinsic and extrinsic contributions to stochasticity in gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[125]  A. Arkin,et al.  Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. , 1998, Genetics.

[126]  R Rosen,et al.  Some realizations of (M,R)-systems and their interpretation. , 1971, The Bulletin of mathematical biophysics.

[127]  S. Schuster,et al.  Metabolic network structure determines key aspects of functionality and regulation , 2002, Nature.

[128]  Abhijit Chatterjee,et al.  Multiscale spatial Monte Carlo simulations: multigriding, computational singular perturbation, and hierarchical stochastic closures. , 2006, The Journal of chemical physics.

[129]  Karl Henrik Johansson,et al.  Dynamical properties of hybrid automata , 2003, IEEE Trans. Autom. Control..

[130]  B. Palsson,et al.  Regulation of gene expression in flux balance models of metabolism. , 2001, Journal of theoretical biology.

[131]  Andreas Kremling,et al.  Analysis of global control of Escherichia coli carbohydrate uptake , 2007, BMC Systems Biology.

[132]  B. Palsson,et al.  Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110 , 1994, Applied and environmental microbiology.

[133]  Jamey D. Young,et al.  Integrating cybernetic modeling with pathway analysis provides a dynamic, systems‐level description of metabolic control , 2008, Biotechnology and bioengineering.

[134]  H. D. Jong,et al.  Qualitative simulation of the initiation of sporulation in Bacillus subtilis , 2004, Bulletin of mathematical biology.

[135]  B. Palsson,et al.  Transcriptional regulation in constraints-based metabolic models of Escherichia coli Covert , 2002 .

[136]  Christoph Kaleta,et al.  Phenotype prediction in regulated metabolic networks , 2008, BMC Systems Biology.

[137]  M. Scheffer,et al.  Geometric Analysis of Ecological Models with Slow and Fast Processes , 2000, Ecosystems.

[138]  F. Srienc,et al.  Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism , 2009, Applied Microbiology and Biotechnology.

[139]  Katherine C. Chen,et al.  Integrative analysis of cell cycle control in budding yeast. , 2004, Molecular biology of the cell.

[140]  Erwin P. Gianchandani,et al.  Dynamic Analysis of Integrated Signaling, Metabolic, and Regulatory Networks , 2008, PLoS Comput. Biol..

[141]  D.-W. Ding,et al.  MODELING AND ANALYZING THE METABOLISM OF RIBOFLAVIN PRODUCTION USING PETRI NETS , 2009 .

[142]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[143]  Richard Banks,et al.  Modelling and Analysing Genetic Networks: From Boolean Networks to Petri Nets , 2006, CMSB.

[144]  Benno Schwikowski,et al.  Graph-based methods for analysing networks in cell biology , 2006, Briefings Bioinform..

[145]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[146]  J. Heijnen Approximative kinetic formats used in metabolic network modeling , 2005, Biotechnology and bioengineering.

[147]  H. Westerhoff,et al.  Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway , 2001, FEBS letters.