Toward Graphene Plasmon-Based Free-Electron IR to X-ray Sources

Rapid progress in nanofabrication methods has fuelled a quest for ultra-compact photonic integrated systems and nanoscale light sources. The prospect of small-footprint, high-quality emitters of short-wavelength radiation is especially exciting due to the importance of extreme ultraviolet and X-ray radiation as research and diagnostic tools in medicine, engineering, and the natural sciences. Here, we propose a highly-directional, tunable, and monochromatic radiation source based on electrons interacting with graphene plasmons (GPs). Our complementary analytical theory and ab-initio simulations demonstrate that the high momentum of the strongly-confined GPs enables the generation of high-frequency radiation from relatively low-energy electrons, bypassing the need for lengthy electron acceleration stages or extreme laser intensities. For instance, highly-directional 20 keV photons could be generated in a table-top design using electrons from conventional radiofrequency (RF) electron guns. The conductive nature and high damage threshold of graphene make it especially suitable for this application. Our electron-plasmon scattering

[1]  Emilio A. Nanni,et al.  Nano-modulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation , 2015, 1506.07053.

[2]  O. Hess,et al.  Nonequilibrium plasmons with gain in graphene , 2014, 1412.3042.

[3]  S. Fan,et al.  Graphene surface plasmons at the near-infrared optical regime , 2014, Scientific Reports.

[4]  H. Riedmatten,et al.  Electrical control of optical emitter relaxation pathways enabled by graphene , 2014, Nature Physics.

[5]  G. Vignale,et al.  Highly confined low-loss plasmons in graphene-boron nitride heterostructures. , 2014, Nature materials.

[6]  G. Navickaite,et al.  Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns , 2014, Science.

[7]  V. Torchilin,et al.  On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles , 2014, Nature Medicine.

[8]  Nicholas T. Dee,et al.  Direct fabrication of graphene on SiO2 enabled by thin film stress engineering , 2014, Scientific Reports.

[9]  Chao Zhang,et al.  Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam , 2014 .

[10]  F. D. Abajo,et al.  Graphene Plasmonics: Challenges and Opportunities , 2014, 1402.1969.

[11]  P. Avouris,et al.  Graphene plasmonics for terahertz to mid-infrared applications. , 2014, ACS nano.

[12]  X. Duan,et al.  Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. , 2013, Nature nanotechnology.

[13]  G. Travish,et al.  Demonstration of electron acceleration in a laser-driven dielectric microstructure , 2013, Nature.

[14]  Minghao Qi,et al.  Dielectric laser accelerators , 2013, 1309.7637.

[15]  P. Hommelhoff,et al.  Laser-based acceleration of nonrelativistic electrons at a dielectric structure. , 2013, Physical review letters.

[16]  Marin Soljacic,et al.  Plasmons in Graphene: Fundamental Properties and Potential Applications , 2013, Proceedings of the IEEE.

[17]  Min Seok Jang,et al.  Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. , 2013, Nano letters.

[18]  F. Guinea,et al.  Damping pathways of mid-infrared plasmons in graphene nanostructures , 2013, Nature Photonics.

[19]  Jing Kong,et al.  Broad electrical tuning of graphene-loaded plasmonic antennas. , 2013, Nano letters.

[20]  Maury Tigner,et al.  Record high-average current from a high-brightness photoinjector , 2013 .

[21]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[22]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[23]  P. Ajayan,et al.  Plasmon-induced doping of graphene. , 2012, ACS nano.

[24]  Guanxiong Liu,et al.  Epitaxial graphene nanoribbon array fabrication using BCP-assisted nanolithography. , 2012, ACS nano.

[25]  M. Murnane,et al.  Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers , 2012, Science.

[26]  Jagjit Nanda,et al.  Atomically localized plasmon enhancement in monolayer graphene. , 2012, Nature nanotechnology.

[27]  S. Thongrattanasiri,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[28]  C. N. Lau,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[29]  D E Moncton,et al.  Intense superradiant x rays from a compact source using a nanocathode array and emittance exchange. , 2012, Physical review letters.

[30]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[31]  T. Stauber,et al.  Plasmons and near-field amplification in double-layer graphene , 2011, 1112.0443.

[32]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[33]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[34]  Arvinder S. Sandhu,et al.  Response of graphene to femtosecond high-intensity laser irradiation , 2011, 1105.1193.

[35]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[36]  Marinko Jablan,et al.  Transverse electric plasmons in bilayer graphene. , 2011, Optics express.

[37]  S. Louie,et al.  Observation of carrier-density-dependent many-body effects in graphene via tunneling spectroscopy. , 2010, Physical review letters.

[38]  V. Karagodsky,et al.  Enhancing X-ray generation by electron-beam-laser interaction in an optical bragg structure. , 2010, Physical review letters.

[39]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[40]  D P Tsai,et al.  Light well: a tunable free-electron light source on a chip. , 2009, Physical review letters.

[41]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[42]  L. Falkovsky,et al.  Optical properties of graphene , 2008, 0806.3663.

[43]  F. Guinea,et al.  Dynamical polarization of graphene at finite doping , 2006, cond-mat/0610630.

[44]  S. Sarma,et al.  Dielectric function, screening, and plasmons in two-dimensional graphene , 2006, cond-mat/0610561.

[45]  T. Elsaesser,et al.  Recent progress in ultrafast X-ray diffraction. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[46]  Chi-ping Chen,et al.  Cold-fluid theory of equilibrium and stability of a high-intensity periodically twisted ellipse-shaped charged-particle beam , 2006 .

[47]  S. E. Irvine,et al.  Surface-plasmon-based electron acceleration , 2006 .

[48]  K. Kim,et al.  Photoinjector generation of a flat electron beam with transverse emittance ratio of 100 , 2005, physics/0511011.

[49]  Bruce E. Carlsten,et al.  First observation of elliptical sheet beam formation with an asymmetric solenoid lens , 2005 .

[50]  J. Arthur,et al.  X-ray free-electron lasers , 2005 .

[51]  S. E. Irvine,et al.  Generation of 0.4-keV femtosecond electron pulses using impulsively excited surface plasmons. , 2004, Physical review letters.

[52]  G. Krafft,et al.  Spectral distributions of thomson-scattered photons from high-intensity pulsed lasers. , 2004, Physical review letters.

[53]  M. Chergui,et al.  Ultrafast X-ray absorption spectroscopy. , 2004, Chemical reviews.

[54]  K. Flöttmann,et al.  A LOW EMITTANCE, FLAT-BEAM ELECTRON SOURCE FOR LINEAR COLLIDERS , 2001 .

[55]  Antoine Rousse,et al.  Femtosecond x-ray crystallography , 2001 .

[56]  Chen,et al.  Cold-fluid equilibrium for a corkscrewing elliptic beam in a variably focusing channel , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[57]  Esarey,et al.  Thomson scattering of intense lasers from electron beams at arbitrary interaction angles. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[58]  Esarey,et al.  Nonlinear Thomson scattering of intense laser pulses from beams and plasmas. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[59]  A. Yariv,et al.  Spontaneous and stimulated emission from quasifree electrons , 1988 .

[60]  A. Gover,et al.  Angular radiation pattern of Smith–Purcell radiation , 1984 .

[61]  M. Brereton Classical Electrodynamics (2nd edn) , 1976 .

[62]  Edward M. Purcell,et al.  Visible Light from Localized Surface Charges Moving across a Grating , 1953 .

[63]  F. D. Abajo,et al.  MultipleExcitationofCon fi nedGraphene Plasmons by Single Free Electrons , 2013 .