The molecular basis of erythrocyte shape.

Recent discoveries about the molecular organization and physical properties of the mammalian erythrocyte membrane and its associated structural proteins can now be used to explain, and may eventually be used to predict, the shape of the erythrocyte. Such explanations are possible because the relatively few structural proteins of the erythrocyte are regularly distributed over the entire cytoplasmic surface of the cell membrane and because the well-understood topological associations of these proteins seem to be stable in comparison with the time required for the cell to change shape. These simplifications make the erythrocyte the first nonmuscle cell for which it will be possible to extend our knowledge of molecular interactions to the next hierarchical level of organization that deals with shape and shape transformations.

[1]  R. Cherry,et al.  Rotational and lateral diffusion of membrane proteins. , 1979, Biochimica et biophysica acta.

[2]  D. Branton,et al.  Intramembrane particle aggregation in erythrocyte ghosts. II. The influence of spectrin aggregation. , 1976, Biochimica et biophysica acta.

[3]  V. Ohanian,et al.  In vitro formation of a complex between cytoskeletal proteins of the human erythrocyte , 1979, Nature.

[4]  S Chien,et al.  Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane. , 1978, Biophysical journal.

[5]  M. Sheetz,et al.  2,3-Diphosphoglycerate and ATP dissociate erythrocyte membrane skeletons. , 1980, The Journal of biological chemistry.

[6]  M. Beckerle,et al.  Analysis of the role of microtubules and actin in erythrophore intracellular motility , 1983, The Journal of cell biology.

[7]  D. Branton,et al.  Interaction of cytoskeletal proteins on the human erythrocyte membrane , 1981, Cell.

[8]  Y. L. Dubreuil,et al.  A dynamical study on the interactions between the cytoskeleton components in the human erythrocyte as detected by saturation transfer electron paramagnetic resonance of spin-labeled spectrin, ankyrin, and protein 4.1. , 1983, Archives of biochemistry and biophysics.

[9]  M. McNiven,et al.  The cytoplast: A unit structure in chromatophores , 1982, Cell.

[10]  R Josephs,et al.  Ultrastructure of the intact skeleton of the human erythrocyte membrane , 1986, The Journal of cell biology.

[11]  B. Roux,et al.  Differences in the electric birefringence of spectrin dimers and tetramers as shown by the fast reversing electric pulse method. , 1982, Biophysical chemistry.

[12]  A. Ben-Ze'ev,et al.  The outer boundary of the cytoskeleton: a lamina derived from plasma membrane proteins , 1979, Cell.

[13]  S. Lux,et al.  Red cell membrane skeletal defects in hereditary and acquired hemolytic anemias. , 1983, Seminars in hematology.

[14]  Z. Kam,et al.  Solution scattering studies of dimeric and tetrameric spectrin. , 1982, Biophysical chemistry.

[15]  M. Kirschner,et al.  Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins , 1986, Nature.

[16]  Richard A. Anderson,et al.  Glycophorin is linked by band 4.1 protein to the human erythrocyte membrane skeleton , 1984, Nature.

[17]  D. Branton,et al.  Selective association of spectrin with the cytoplasmic surface of human erythrocyte plasma membranes. Quantitative determination with purified (32P)spectrin. , 1977, The Journal of biological chemistry.

[18]  B. Bull,et al.  Crenation and cupping of the red cell: a new theoretical approach. Part I. Crenation. , 1980, Journal of theoretical biology.

[19]  A. Elgsaeter,et al.  Human spectrin. VI. A viscometric study. , 1981, Biochimica et biophysica acta.

[20]  V. Marchesi,et al.  Regulation of the association of membrane skeletal protein 4.1 with glycophorin by a polyphosphoinositide , 1985, Nature.

[21]  G. Fairbanks,et al.  Relationship of major phosphorylation reactions and MgATPase activities to ATP-dependent shape change of human erythrocyte membranes. , 1986, The Journal of biological chemistry.

[22]  A. Mikkelsen,et al.  Human spectrin. V. A comparative electro-optic study of heterotetramers and heterodimers. , 1981, Biochimica et biophysica acta.

[23]  B. Roelofsen,et al.  Lipid molecular shape affects erythrocyte morphology: a study involving replacement of native phosphatidylcholine with different species followed by treatment of cells with sphingomyelinase C or phospholipase A2 , 1985, The Journal of cell biology.

[24]  G. Fairbanks,et al.  Inhibition of erythrocyte membrane shape change by band 3 cytoplasmic fragment , 1984, Journal of cellular biochemistry.

[25]  Y. Lange,et al.  Role of the reticulum in the stability and shape of the isolated human erythrocyte membrane , 1982, The Journal of cell biology.

[26]  V. Bennett The Molecular Basis for Membrane – Cytoskeleton Association in Human Erythrocytes , 1982, Journal of cellular biochemistry.

[27]  S. J. Singer,et al.  Evidence for a large internal pressure in biological membranes. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[28]  J. Robinson,et al.  Triton X-100 extraction of P815 tumor cells: evidence for a plasma membrane skeleton structure , 1985, The Journal of cell biology.

[29]  F. Solomon,et al.  Specification of cell morphology by endogenous determinants , 1981, The Journal of cell biology.

[30]  M. Schliwa,et al.  Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules , 1984, Nature.

[31]  Shao-Tang Sun,et al.  Phase transitions in ionic gels , 1980 .

[32]  L. J. Lis,et al.  Measurement of the lateral compressibility of several phospholipid bilayers. , 1982, Biophysical journal.

[33]  V. Bennett The membrane skeleton of human erythrocytes and its implications for more complex cells. , 1985, Annual review of biochemistry.

[34]  V. Fowler,et al.  Erythrocyte membrane tropomyosin. Purification and properties. , 1984, The Journal of biological chemistry.

[35]  A. Mikkelsen,et al.  Some viscoelastic properties of human erythrocyte spectrin networks end-linked in vitro. , 1985, Biochimica et biophysica acta.

[36]  W. Gratzer,et al.  Structural and dynamic states of actin in the erythrocyte , 1983, The Journal of cell biology.

[37]  R. Hochmuth,et al.  Force relaxation and permanent deformation of erythrocyte membrane. , 1983, Biophysical journal.

[38]  H. Ishikawa,et al.  The role of ankyrin in shape and deformability change of human erythrocyte ghosts. , 1984, Biochimica et biophysica acta.

[39]  Shih-Chun Liu,et al.  Spectrin tetramer–dimer equilibrium and the stability of erythrocyte membrane skeletons , 1980, Nature.

[40]  S H White,et al.  Molecular packing and area compressibility of lipid bilayers. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[41]  A. Mikkelsen,et al.  Human spectrin. II. An electro-optic study. , 1978, Biochimica et biophysica acta.

[42]  S. Balk,et al.  Actin-containing matrix associated with the plasma membrane of murine tumour and lymphoid cells , 1981, Nature.

[43]  D. Speicher The present status of erythrocyte spectrin structure: The 106‐residue repetitive structure is a basic feature of an entire class of proteins , 1986, Journal of cellular biochemistry.

[44]  S Chien,et al.  Elastic deformations of red blood cells. , 1977, Journal of biomechanics.

[45]  D M Shotton,et al.  The molecular structure of human erythrocyte spectrin. Biophysical and electron microscopic studies. , 1979, Journal of molecular biology.

[46]  M. Sheetz,et al.  Biological membranes as bilayer couples. III. Compensatory shape changes induced in membranes , 1976, The Journal of cell biology.

[47]  J E Ferrell,et al.  Phosphoinositide metabolism and the morphology of human erythrocytes , 1984, The Journal of cell biology.

[48]  R. Peters Translational diffusion in the plasma membrane of single cells as studied by fluorescence microphotolysis. , 1981, Cell biology international reports.

[49]  M. Sheetz,et al.  Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[50]  M. Sheetz Membrane skeletal dynamics: role in modulation of red cell deformability, mobility of transmembrane proteins, and shape. , 1983, Seminars in hematology.

[51]  A. Mikkelsen,et al.  The human erythrocyte membrane skeleton may be an ionic gel , 1986, European Biophysics Journal.

[52]  J. Dunbar,et al.  Hydrodynamic characterization of the heterodimer of spectrin. , 1981, Biochimica et biophysica acta.

[53]  P. Canham The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.

[54]  S. J. Singer,et al.  The solubility of amphipathic molecules in biological membranes and lipid bilayers and its implications for membrane structure. , 1981, Biochemistry.

[55]  Vincent T. Marchesi,et al.  Erythrocyte spectrin is comprised of many homologous triple helical segments , 1984, Nature.

[56]  Frank Solomon Neuroblastoma cells recapitulate their detailed neurite morphologies after reversible microtubule disassembly , 1980, Cell.

[57]  D. Papahadjopoulos Surface properties of acidic phospholipids: interaction of monolayers and hydrated liquid crystals with uni- and bi-valent metal ions. , 1968, Biochimica et biophysica acta.

[58]  V. Ohanian,et al.  Analysis of the ternary interaction of the red cell membrane skeletal proteins spectrin, actin, and 4.1. , 1984, Biochemistry.

[59]  D. Branton,et al.  Visualization of the protein associations in the erythrocyte membrane skeleton. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[60]  C. M. Cohen,et al.  Band 4.1 causes spectrin-actin gels to become thixiotropic. , 1980, Biochemical and biophysical research communications.

[61]  R. Waugh,et al.  Thermoelasticity of red blood cell membrane. , 1979, Biophysical journal.

[62]  D. Branton,et al.  A membrane cytoskeleton from Dictyostelium discoideum. I. Identification and partial characterization of an actin-binding activity , 1981, The Journal of cell biology.

[63]  E. Ungewickell,et al.  Self-association of human spectrin. A thermodynamic and kinetic study. , 1978, European journal of biochemistry.

[64]  E. Evans Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells. , 1980, Biophysical journal.

[65]  Cohen Cm The molecular organization of the red cell membrane skeleton. , 1983 .

[66]  A. Mikkelsen,et al.  The human erythrocyte membrane skeleton may be an ionic gel , 1986, European Biophysics Journal.

[67]  A. Elgsaeter Human spectrin. I. A classical light scattering study. , 1978, Biochimica et biophysica acta.

[68]  W. Helfrich,et al.  Measurement of the curvature-elastic modulus of egg lecithin bilayers. , 1976, Biochimica et biophysica acta.

[69]  V. Bennett,et al.  Association between ankyrin and the cytoplasmic domain of band 3 isolated from the human erythrocyte membrane. , 1980, The Journal of biological chemistry.

[70]  A. Zachowski,et al.  Asymmetric lipid fluidity in human erythrocyte membrane: new spin-label evidence. , 1984, Biochemistry.

[71]  D. Branton,et al.  Partial purification and characterization of an actin-bundling protein, band 4.9, from human erythrocytes , 1985, The Journal of cell biology.

[72]  G. Ralston,et al.  Physico-chemical characterization of the spectrin tetramer from bovine erythrocyte membranes. , 1976, Biochimica et biophysica acta.

[73]  A. Mikkelsen,et al.  Human erythrocyte spectrin dimer intrinsic viscosity: temperature dependence and implications for the molecular basis of the erythrocyte membrane free energy. , 1985, Biochimica et biophysica acta.

[74]  A. Tamura,et al.  Roles of charged groups on the surface of membrane lipid bilayer of human erythrocytes in induction of shape change. , 1981, Journal of biochemistry.