Nanomedicine I: In vitro and in vivo evaluation of paclitaxel loaded poly-(ε-caprolactone), poly (dl-lactide-co-glycolide) and poly (dl-lactic acid) matrix nanoparticles in wistar rats

[1]  D. Chiappetta,et al.  Poly(ε-caprolactone), Eudragit® RS 100 and poly(ε-caprolactone)/Eudragit® RS 100 blend submicron particles for the sustained release of the antiretroviral efavirenz. , 2013, Colloids and surfaces. B, Biointerfaces.

[2]  R. Saha,et al.  DETERMINATION OF PACLITAXEL BY 3D VIEW LC-DIODE ARRAY UV: ITS APPLICATION TO AN IN SITU CLOSED LOOP RE-CIRCULATING INTESTINE ABSORPTION STUDY IN RATS , 2013 .

[3]  B. Mukherjee,et al.  Poly-lactide-co-glycolide nanoparticles containing voriconazole for pulmonary delivery: in vitro and in vivo study. , 2013, Nanomedicine : nanotechnology, biology, and medicine.

[4]  R. Saha,et al.  A simple and rapid 3D view method for selective and sensitive determination of paclitaxel in micro volume rat plasma by LC-diode array UV and its application to a pharmacokinetic study. , 2012, Journal of chromatographic science.

[5]  Sami Nazzal,et al.  Paclitaxel loaded PEG(5000)-DSPE micelles as pulmonary delivery platform: formulation characterization, tissue distribution, plasma pharmacokinetics, and toxicological evaluation. , 2011, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[6]  R. N. Saha,et al.  Nanoparticulate drug delivery systems for cancer chemotherapy , 2010, Molecular membrane biology.

[7]  R. Saha,et al.  Application of rotatable central composite design in the preparation and optimization of poly(lactic-co-glycolic acid) nanoparticles for controlled delivery of paclitaxel , 2010, Drug development and industrial pharmacy.

[8]  L. Tang,et al.  A novel paclitaxel-loaded poly(epsilon-caprolactone)/Poloxamer 188 blend nanoparticle overcoming multidrug resistance for cancer treatment. , 2010, Acta biomaterialia.

[9]  Shaofei Xie,et al.  DDSolver: An Add-In Program for Modeling and Comparison of Drug Dissolution Profiles , 2010, The AAPS Journal.

[10]  Donald W. Miller,et al.  Comparison of anti-tumor efficacy of paclitaxel delivered in nano- and microparticles. , 2010, International journal of pharmaceutics.

[11]  Haimin Li,et al.  Combination chemotherapy of doxorubicin and paclitaxel for hepatocellular carcinoma in vitro and in vivo , 2010, Journal of Cancer Research and Clinical Oncology.

[12]  L. Goya,et al.  A diet rich in cocoa attenuates N-nitrosodiethylamine-induced liver injury in rats. , 2009, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[13]  R. Murthy,et al.  Paclitaxel-loaded PLGA nanoparticles surface modified with transferrin and Pluronic®P85, an in vitro cell line and in vivo biodistribution studies on rat model , 2009, Journal of drug targeting.

[14]  A. Dash,et al.  Chapter 7 Paclitaxel. , 2009, Profiles of drug substances, excipients, and related methodology.

[15]  N. Peppas,et al.  Modeling of drug release from biodegradable polymer blends. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[16]  M. R. Kumar,et al.  PLGA nanoparticles for oral delivery of hydrophobic drugs: influence of organic solvent on nanoparticle formation and release behavior in vitro and in vivo using estradiol as a model drug. , 2008, Journal of pharmaceutical sciences.

[17]  R. Saha,et al.  Etoposide-Loaded PLGA and PCL Nanoparticles I: Preparation and Effect of Formulation Variables , 2008 .

[18]  A. Babbar,et al.  Etoposide Loaded PLGA and PCL Nanoparticles II: Biodistribution and Pharmacokinetics after Radiolabeling with Tc-99m , 2008 .

[19]  A. Babbar,et al.  Etoposide loaded PLGA and PCL nanoparticles II: biodistribution and pharmacokinetics after radiolabeling with Tc-99m. , 2008, Drug delivery.

[20]  S. Feng,et al.  In vitro and in vivo evaluation of methoxy polyethylene glycol-polylactide (MPEG-PLA) nanoparticles for small-molecule drug chemotherapy. , 2007, Biomaterials.

[21]  Samir Mitragotri,et al.  Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[22]  Dae-Duk Kim,et al.  Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. , 2007, International journal of pharmaceutics.

[23]  K. Derakhshandeh,et al.  Encapsulation of 9-nitrocamptothecin, a novel anticancer drug, in biodegradable nanoparticles: factorial design, characterization and release kinetics. , 2007, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[24]  Nicholas A Peppas,et al.  Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. , 2006, International journal of pharmaceutics.

[25]  M. Brogly,et al.  A model of chain folding in Polycaprolactone-b-Polymethyl Methacrylate diblock copolymers , 2005 .

[26]  J. Au,et al.  Formulating Paclitaxel in Nanoparticles Alters Its Disposition , 2005, Pharmaceutical Research.

[27]  Donald W. Miller,et al.  Effect of Particle Size of Nanospheres and Microspheres on the Cellular-Association and Cytotoxicity of Paclitaxel in 4T1 Cells , 2005, Pharmaceutical Research.

[28]  Rubiana M Mainardes,et al.  PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. , 2005, International journal of pharmaceutics.

[29]  R. Panchagnula,et al.  In vivo pharmacokinetic and tissue distribution studies in mice of alternative formulations for local and systemic delivery of Paclitaxel: gel, film, prodrug, liposomes and micelles. , 2005, Current drug delivery.

[30]  W. Waud,et al.  Intravenous Hydrophobic Drug Delivery: A Porous Particle Formulation of Paclitaxel (AI-850) , 2005, Pharmaceutical Research.

[31]  Jayanth Panyam,et al.  Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. , 2004, Journal of pharmaceutical sciences.

[32]  A. Mitra,et al.  Effect of surfactant on fabrication and characterization of paclitaxel‐loaded polybutylcyanoacrylate nanoparticulate delivery systems , 2003, The Journal of pharmacy and pharmacology.

[33]  S. Sahoo,et al.  Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[34]  M. Ott,et al.  Paclitaxel shows cytotoxic activity in human hepatocellular carcinoma cell lines. , 1999, Cancer letters.

[35]  Y. I. Kim,et al.  Preparation and characterization of nanoparticles containing an antihypertensive agent. , 1998, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[36]  M. Allwood,et al.  The extraction of diethylhexylphthalate (DEHP) from polyvinyl chloride components of intravenous infusion containers and administration sets by paclitaxel injection , 1996 .