The Fibonacci model and the Temperley-Lieb algebra

We give an elementary construction of the Fibonacci model, a unitary braid group representation that is universal for quantum computation.

[1]  Edward Witten,et al.  Quantum field theory and the Jones polynomial , 1989 .

[2]  Frank Wilczek,et al.  Fractional statistics and anyon superconductivity , 1990 .

[3]  M. Rasetti,et al.  Spin network quantum simulator , 2002, quant-ph/0209016.

[4]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[5]  Louis H. Kauffman,et al.  Spin networks and anyonic topological computing , 2006, SPIE Defense + Commercial Sensing.

[6]  Michael Larsen,et al.  A Modular Functor Which is Universal¶for Quantum Computation , 2000, quant-ph/0001108.

[7]  Peter W. Shor,et al.  Estimating Jones polynomials is a complete problem for one clean qubit , 2007, Quantum Inf. Comput..

[8]  M. Freedman,et al.  Simulation of Topological Field Theories¶by Quantum Computers , 2000, quant-ph/0001071.

[9]  Louis H. Kauffman,et al.  State Models and the Jones Polynomial , 1987 .

[10]  V. Jones A polynomial invariant for knots via von Neumann algebras , 1985 .

[11]  Louis H. Kauffman,et al.  Spin networks and anyonic topological computing II , 2006, SPIE Defense + Commercial Sensing.

[12]  Louis H. Kauffman,et al.  A 3-stranded quantum algorithm for the Jones Polynomial , 2007, SPIE Defense + Commercial Sensing.

[13]  M. Freedman A Magnetic Model with a Possible Chern-Simons Phase , 2001, quant-ph/0110060.

[14]  Louis H. Kauffman,et al.  $q$ - Deformed Spin Networks, Knot Polynomials and Anyonic Topological Quantum Computation , 2006 .

[15]  Louis H. Kauffman,et al.  The Fibonacci Model and the Temperley-Lieb Algebra , 2008 .