Order stars and rational approximants to exp( z )

Abstract In this paper we survey order fitting and A-acceptability of rational approximants to the exponential. Our exposition is centered around two theorems of great generality: the first imposes a bound on the order of an A-acceptable scheme with given fitting and the second presents an order bound when an A-acceptable approximant possesses a given number of real poles.

[1]  A. Iserles,et al.  Frequency Fitting of Rational Approximations to the Exponential Function , 1983 .

[2]  M. Powell,et al.  On the A-Acceptability of Rational Approximations that Interpolate the Exponential Function , 1981 .

[3]  O. Nevanlinna,et al.  Stability of explicit time discretizations for solving initial value problems , 1982 .

[4]  Arieh Iserles Order Stars, Approximations and Finite Differences I. The General Theory of Order Stars , 1985 .

[5]  Germund Dahlquist,et al.  G-stability is equivalent toA-stability , 1978 .

[6]  Accuracy bounds for semidiscretizations of hyperbolic problems , 1985 .

[7]  S. P. Nørsett C-Polynomials for rational approximation to the exponential function , 1975 .

[8]  G. Strang,et al.  THE OPTIMAL ACCURACY OF DIFFERENCE SCHEMES , 1983 .

[9]  A. Iserles Order Stars and a Saturation Theorem for First-order Hyperbolics , 1982 .

[10]  Gonazález Concepción On the a-acceptability of Pade´-type approximants to the exponential with a single pole , 1987 .

[11]  Zdenek Picel,et al.  Two-parameter, arbitrary order, exponential approximations for stiff equations , 1975 .

[12]  E. Hairer,et al.  Order stars and stability theorems , 1978 .

[13]  G. Wanner,et al.  The real-pole sandwich for rational approximations and oscillation equations , 1979 .

[14]  E. Hairer Unconditionally stable methods for second order differential equations , 1979 .

[15]  A. Iserles Rational Interpolation to $\exp ( - x)$ with Application to Certain Stiff Systems , 1981 .

[16]  Stability and accuracy of difference schemes for hyperbolic problems , 1985 .

[17]  A. Iserles Generalized order star theory , 1981 .

[18]  O. Nevanlinna,et al.  Stability and accuracy of time discretizations for initial value problems , 1982 .

[19]  J. Verwer,et al.  Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations , 1984 .