Constructing the Convex Hull of a Partially Sorted Set of Points

Abstract In this paper we give an optimal algorithm for constructing the convex hull of a partially sorted set S of n points in R 2 . Specifically, we assume S is represented as the union of a collection of non-empty subsets S 0 , S 1 , S 2 ,…, S m , where the x -coordinate of each point in S i is smaller than the x -coordinate of any point in S j if i j . Our method runs in O( n log h max ) time, where h max is the maximum number of hull edges incident on the points of any single subset S i . In fact, if one is only interested in finding the hull edges that ‘bridge’ different subsets, then our method runs in O( n ) time.

[1]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1989, Discret. Comput. Geom..

[2]  Bernard Chazelle,et al.  On the convex layers of a planar set , 1985, IEEE Trans. Inf. Theory.

[3]  Raimund Seidel,et al.  Linear programming and convex hulls made easy , 1990, SCG '90.

[4]  Andrew Chi-Chih Yao,et al.  A Lower Bound to Finding Convex Hulls , 1981, JACM.

[5]  Martin E. Dyer,et al.  Linear Time Algorithms for Two- and Three-Variable Linear Programs , 1984, SIAM J. Comput..

[6]  N. Megiddo Linear-time algorithms for linear programming in R3 and related problems , 1982, FOCS 1982.

[7]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[8]  Herbert Edelsbrunner,et al.  An O(n log² h) Time Algorithm for the Three-Dimensional Convex Hull Problem , 1991, SIAM J. Comput..

[9]  Leonidas J. Guibas,et al.  Parallel computational geometry , 1988, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[10]  Bernard Chazelle,et al.  An optimal convex hull algorithm in any fixed dimension , 1993, Discret. Comput. Geom..

[11]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[12]  Mikhail J. Atallah,et al.  Efficient Parallel Solutions to Some Geometric Problems , 1986, J. Parallel Distributed Comput..

[13]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[14]  Michael T. Goodrich,et al.  Finding the Convex Hull of a Sorted Point Set in Parallel , 1987, Inf. Process. Lett..

[15]  Jack Sklansky,et al.  Finding the convex hull of a simple polygon , 1982, Pattern Recognit. Lett..

[16]  Nimrod Megiddo,et al.  Linear-time algorithms for linear programming in R3 and related problems , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[17]  D. T. Lee,et al.  Computational Geometry—A Survey , 1984, IEEE Transactions on Computers.

[18]  David G. Kirkpatrick,et al.  The Ultimate Planar Convex Hull Algorithm? , 1986, SIAM J. Comput..

[19]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[20]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..