Variational Multiscale Flow Analysis in Aerospace, Energy and Transportation Technologies

Computational flow analysis is now playing a key role in aerospace, energy and transportation technologies, bringing solution in challenging problems such as aerodynamics of parachutes, thermo-fluid analysis of ground vehicles and tires, and fluid–structure interaction (FSI) analysis of wind turbines. The computational challenges include complex geometries, moving boundaries and interfaces, FSI, turbulent flows, rotational flows, and large problem sizes. The Residual-Based Variational Multiscale (RBVMS), ALE-VMS and Space–Time VMS (ST-VMS) methods have been quite successful serving as core methods in addressing the computational challenges. The core methods are supplemented with special methods targeting specific classes of problems, such as the Slip Interface (SI) method, Multi-Domain Method, and the “ST-C” data compression method. We describe the core and special methods. We present, as examples of challenging computations performed with these methods, aerodynamic analysis of a ram-air parachute, thermo-fluid analysis of a freight truck and its rear set of tires, and aerodynamic and FSI analysis of two back-to-back wind turbines in atmospheric boundary layer flow.

[1]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[2]  Kenji Takizawa,et al.  Computational thermo-fluid analysis of a disk brake , 2016 .

[3]  T. Hughes,et al.  A multi-element group preconditioned GMRES algorithm for nonsymmetric systems arising in finite element analysis , 1989 .

[4]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[5]  Tayfun E. Tezduyar,et al.  Finite element stabilization parameters computed from element matrices and vectors , 2000 .

[6]  Tayfun E. Tezduyar,et al.  Massively parallel finite element simulation Of compressible and incompressible flows , 1994 .

[7]  Victor M. Calo,et al.  Improving stability of stabilized and multiscale formulations in flow simulations at small time steps , 2010 .

[8]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems , 1986 .

[9]  Tayfun E. Tezduyar,et al.  Space–time computations in practical engineering applications: a summary of the 25-year history , 2018, Computational Mechanics.

[10]  Yuri Bazilevs,et al.  Computational Fluid-Structure Interaction: Methods and Applications , 2013 .

[11]  Tayfun E. Tezduyar,et al.  FSI modeling of the Orion spacecraft drogue parachutes , 2015 .

[12]  Tayfun E. Tezduyar,et al.  Space–time Isogeometric flow analysis with built-in Reynolds-equation limit , 2019, Mathematical Models and Methods in Applied Sciences.

[13]  Tayfun E. Tezduyar,et al.  Tire aerodynamics with actual tire geometry, road contact and tire deformation , 2018, Computational Mechanics.

[14]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .

[15]  J. Jonkman,et al.  Definition of a 5-MW Reference Wind Turbine for Offshore System Development , 2009 .

[16]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[17]  Marek Behr,et al.  Parallel finite-element computation of 3D flows , 1993, Computer.

[18]  A. Korobenko,et al.  Novel structural modeling and mesh moving techniques for advanced fluid–structure interaction simulation of wind turbines , 2015 .

[19]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[20]  Tayfun E. Tezduyar,et al.  Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity , 2017 .

[21]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[22]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[23]  Tayfun E. Tezduyar,et al.  Space-Time Computational Techniques for the Aerodynamics of Flapping Wings , 2012 .

[24]  Tayfun E. Tezduyar,et al.  Isogeometric hyperelastic shell analysis with out-of-plane deformation mapping , 2018, Computational Mechanics.

[25]  Tayfun E. Tezduyar,et al.  Multiscale space–time fluid–structure interaction techniques , 2011 .

[26]  Tayfun E. Tezduyar,et al.  A stabilized ALE method for computational fluid-structure interaction analysis of passive morphing in turbomachinery , 2019 .

[27]  Tayfun E. Tezduyar,et al.  Methods for computation of flow-driven string dynamics in a pump and residence time , 2019, Mathematical Models and Methods in Applied Sciences.

[28]  A. Korobenko,et al.  Fluid–Structure Interaction Modeling for Fatigue-Damage Prediction in Full-Scale Wind-Turbine Blades , 2016 .

[29]  Tayfun E. Tezduyar,et al.  Stabilization and shock-capturing parameters in SUPG formulation of compressible flows , 2004 .

[30]  Tayfun E. Tezduyar,et al.  Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV , 2014 .

[31]  Yuri Bazilevs,et al.  Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models , 2015, Computational mechanics.

[32]  Yuri Bazilevs,et al.  Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[33]  A. Korobenko,et al.  Computational free-surface fluid–structure interaction with application to floating offshore wind turbines , 2016 .

[34]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[35]  Yuri Bazilevs,et al.  Engineering Analysis and Design with ALE-VMS and Space–Time Methods , 2014 .

[36]  Tayfun E. Tezduyar,et al.  Stabilized formulations for incompressible flows with thermal coupling , 2008 .

[37]  A. Korobenko,et al.  A new variational multiscale formulation for stratified incompressible turbulent flows , 2017 .

[38]  Tayfun E. Tezduyar,et al.  Space–time VMS computation of wind-turbine rotor and tower aerodynamics , 2014 .

[39]  Tayfun E. Tezduyar,et al.  Stabilization and discontinuity-capturing parameters for space–time flow computations with finite element and isogeometric discretizations , 2018 .

[40]  Tayfun E. Tezduyar,et al.  Multiscale space-time methods for thermo-fluid analysis of a ground vehicle and its tires , 2015 .

[41]  Hitoshi Hattori,et al.  Space–time VMS method for flow computations with slip interfaces (ST-SI) , 2015 .

[42]  J. W. Leonard,et al.  Structural Modeling of Parachute Dynamics , 2000 .

[43]  Kenji Takizawa,et al.  Computational engineering analysis with the new-generation space–time methods , 2014 .

[44]  A. Korobenko,et al.  FSI Simulation of two back-to-back wind turbines in atmospheric boundary layer flow , 2017 .

[45]  Tayfun E. Tezduyar,et al.  The multi-domain method for computation of the aerodynamics of a parachute crossing the far wake of an aircraft , 2001 .

[46]  Thomas J. R. Hughes,et al.  Stabilized Methods for Compressible Flows , 2010, J. Sci. Comput..

[47]  Anindya Ghoshal,et al.  Compressible flows on moving domains: Stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modeling , 2017 .

[48]  Tayfun E. Tezduyar,et al.  Turbocharger turbine and exhaust manifold flow computation with the Space–Time Variational Multiscale Method and Isogeometric Analysis , 2019, Computers & Fluids.

[49]  Tayfun E. Tezduyar,et al.  Heart valve flow computation with the integrated Space–Time VMS, Slip Interface, Topology Change and Isogeometric Discretization methods , 2017 .

[50]  S. Mittal,et al.  Computation of unsteady incompressible flows with the stabilized finite element methods: Space-time formulations, iterative strategies and massively parallel implementations , 1992 .

[51]  Tayfun E. Tezduyar,et al.  Ram-air parachute structural and fluid mechanics computations with the Space-Time Isogeometric Analysis (ST-IGA) , 2016 .

[52]  Sutanu Sarkar,et al.  Direct and large-eddy simulations of internal tide generation at a near-critical slope , 2011, Journal of Fluid Mechanics.

[53]  Tayfun E. Tezduyar,et al.  METHODS FOR FSI MODELING OF SPACECRAFT PARACHUTE DYNAMICS AND COVER SEPARATION , 2013 .

[54]  Tayfun Tezduyar,et al.  Methods for parallel computation of complex flow problems , 1999, Parallel Comput..

[55]  T. Tezduyar,et al.  A parallel 3D computational method for fluid-structure interactions in parachute systems , 2000 .

[56]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[57]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[58]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[59]  Kenji Takizawa,et al.  Space–time computational analysis of MAV flapping-wing aerodynamics with wing clapping , 2015 .

[60]  Tayfun E. Tezduyar,et al.  Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms , 2013 .

[61]  A. Korobenko,et al.  Computer Modeling of Wind Turbines: 1. ALE-VMS and ST-VMS Aerodynamic and FSI Analysis , 2018, Archives of Computational Methods in Engineering.

[62]  A. Korobenko,et al.  FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration , 2016 .

[63]  Marco S. Pigazzini,et al.  Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting gear , 2017 .

[64]  A. Korobenko,et al.  ALE–VMS formulation for stratified turbulent incompressible flows with applications , 2015 .

[65]  Hitoshi Hattori,et al.  Turbocharger flow computations with the Space-Time Isogeometric Analysis (ST-IGA) , 2017 .

[66]  T. Tezduyar,et al.  Space–time computation techniques with continuous representation in time (ST-C) , 2014 .

[67]  Yuri Bazilevs,et al.  Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS , 2012 .

[68]  Yuri Bazilevs,et al.  Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulation , 2011 .

[69]  Tayfun E. Tezduyar,et al.  Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust , 2012 .

[70]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[71]  Thomas J. R. Hughes,et al.  NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .

[72]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[73]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[74]  Tayfun E. Tezduyar,et al.  Fluid-structure interactions of a parachute crossing the far wake of an aircraft , 2001 .

[75]  Tayfun E. Tezduyar,et al.  Computational Methods for Parachute Fluid–Structure Interactions , 2012 .

[76]  Tayfun E. Tezduyar,et al.  Multi-domain parallel computation of wake flows , 1999 .

[77]  Xiaowei Deng,et al.  Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines , 2017 .

[78]  Tayfun E. Tezduyar,et al.  Mesh refinement influence and cardiac-cycle flow periodicity in aorta flow analysis with isogeometric discretization , 2019, Computers & Fluids.

[79]  Yuri Bazilevs,et al.  Isogeometric divergence-conforming variational multiscale formulation of incompressible turbulent flows , 2017 .

[80]  Tayfun E. Tezduyar,et al.  Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization , 2018, Computational Mechanics.

[81]  Tayfun E. Tezduyar,et al.  Parallel finite element simulation of large ram-air parachutes , 1997 .

[82]  Tayfun E. Tezduyar,et al.  Medical-image-based aorta modeling with zero-stress-state estimation , 2019, Computational Mechanics.

[83]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[84]  Yuri Bazilevs,et al.  Isogeometric Modeling and Experimental Investigation of Moving-Domain Bridge Aerodynamics , 2019, Journal of Engineering Mechanics.