Analysis of the Refined CRUST1.0 Crustal Model and its Gravity Field

The global crustal model CRUST1.0 (refined using additional global datasets of the solid topography, polar ice sheets and geoid) is used in this study to estimate the average densities of major crustal structures. We further use this refined model to compile the gravity field quantities generated by the Earth’s crustal structures and to investigate their spatial and spectral characteristics and their correlation with the crustal geometry in context of the gravimetric Moho determination. The analysis shows that the average crustal density is 2,830 kg/m3, while it decreases to 2,490 kg/m3 when including the seawater. The average density of the oceanic crust (without the seawater) is 2,860 kg/m3, and the average continental crustal density (including the continental shelves) is 2,790 kg/m3. The correlation analysis reveals that the gravity field corrected for major known anomalous crustal density structures has a maximum (absolute) correlation with the Moho geometry. The Moho signature in these gravity data is seen mainly at the long-to-medium wavelengths. At higher frequencies, the Moho signature is weakening due to a noise in gravity data, which is mainly attributed to crustal model uncertainties. The Moho determination thus requires a combination of gravity and seismic data. In global studies, gravimetric methods can help improving seismic results, because (1) large parts of the world are not yet sufficiently covered by seismic surveys and (2) global gravity models have a relatively high accuracy and resolution. In regional and local studies, the gravimetric Moho determination requires either a detailed crustal density model or seismic data (for a combined gravity and seismic data inversion). We also demonstrate that the Earth’s long-wavelength gravity spectrum comprises not only the gravitational signal of deep mantle heterogeneities (including the core–mantle boundary zone), but also shallow crustal structures. Consequently, the application of spectral filtering in the gravimetric Moho determination will remove not only the gravitational signal of (unknown) mantle heterogeneities, but also the Moho signature at the long-wavelength gravity spectrum.

[1]  N. K. Pavlis,et al.  Terrain-Related Gravimetric Quantities Computed for the Next EGM , 2006 .

[2]  Heather Bedle,et al.  S velocity variations beneath North America , 2009 .

[3]  Iterative 3D gravity inversion with integration of seismologic data , 1999 .

[4]  G. Nolet,et al.  Upper mantle S velocity structure of North America , 1997 .

[5]  E. R. Engdahl,et al.  Constraints on seismic velocities in the Earth from traveltimes , 1995 .

[6]  R. Tenzer,et al.  Global maps of the CRUST 2.0 crustal components stripped gravity disturbances , 2009 .

[7]  Eugene C. Robertson,et al.  The Nature of the Solid Earth , 1972 .

[8]  P. Novák,et al.  Spatial and Spectral Analysis of Refined Gravity Data for Modelling the Crust–Mantle Interface and Mantle-Lithosphere Structure , 2012, Surveys in Geophysics.

[9]  B. Parsons,et al.  An analysis of the variation of ocean floor bathymetry and heat flow with age , 1977 .

[10]  C. Braitenberg,et al.  A new analytical solution estimating the flexural rigidity in the Central Andes , 2007 .

[11]  A. Watts,et al.  On the accuracy of marine gravity measurements , 1988 .

[12]  Barbara Romanowicz,et al.  Inferring upper-mantle structure by full waveform tomography with the spectral element method , 2011 .

[13]  R. Koop,et al.  The use of degree variances in satellite gradiometry , 1997 .

[14]  S. Calmant,et al.  3‐D modelling of seamount topography from satellite altimetry , 1991 .

[15]  Comparison of surface gravity data with satellite data , 1971 .

[16]  Arthur Beiser,et al.  Physics, 3rd ed. , 1983 .

[17]  Lars E. Sjöberg,et al.  Solving Vening Meinesz-Moritz inverse problem in isostasy , 2009 .

[18]  S. T. Crough The correction for sediment loading on the seafloor , 1983 .

[19]  Yong Wang,et al.  Basement structures from satellite-derived gravity field: South China Sea ridge , 2006 .

[20]  R. Carlson,et al.  Slab fragmentation, edge flow and the origin of the Yellowstone hotspot track , 2011 .

[21]  B. Heck,et al.  Effects of topographic and isostatic masses in satellite gravity gradiometry , 2004 .

[22]  P. Shearer,et al.  Shear and compressional velocity models of the mantle from cluster analysis of long‐period waveforms , 2008 .

[23]  S. Lee,et al.  Surface Wave Tomography Applied to the North American Upper Mantle , 2013 .

[24]  Donald L. Turcotte,et al.  Geodynamics - 2nd Edition , 2002 .

[25]  D. Hayes Age‐depth relationships and depth anomalies in the southeast Indian Ocean and south Atlantic Ocean , 1988 .

[26]  Barbara Romanowicz,et al.  Importance of crustal corrections in the development of a new global model of radial anisotropy , 2010 .

[27]  B. Romanowicz,et al.  A Three-Dimensional Radially-Anisotropic Model of Shear Velocity in the Whole Mantle , 2006 .

[28]  B. Kennett,et al.  Traveltimes for global earthquake location and phase identification , 1991 .

[29]  Gabi Laske,et al.  CRUST 5.1: A global crustal model at 5° × 5° , 1998 .

[30]  D. Tsoulis Two Earth Gravity Models from the Analysis of Global Crustal Data , 2004 .

[31]  Timothy H. Dixon,et al.  Bathymetric prediction from Seasat altimeter data , 1983 .

[32]  D. Hayes,et al.  Tectonic corridors in the south Atlantic: Evidence for long‐lived mid‐ocean ridge segmentation , 1992 .

[33]  C. Reigber,et al.  A new isostatic model of the lithosphere and gravity field , 2003 .

[34]  Bogdan Kustowski,et al.  The Shear-Wave Velocity Structure in the Upper Mantle beneath Eurasia , 2008 .

[35]  Walter D. Mooney,et al.  Seismic velocity structure and composition of the continental crust: A global view , 1995 .

[36]  R. Allen,et al.  Investigation of Cascadia segmentation with ambient noise tomography , 2011 .

[37]  Robert Tenzer,et al.  A Mathematical Model of the Global Ocean Saltwater Density Distribution , 2011, Pure and Applied Geophysics.

[38]  H. Moritz,et al.  Geodetic reference system 1980 , 1988 .

[39]  M. C. Gennero,et al.  HIGH-RESOLUTION MEAN SEA SURFACE COMPUTED WITH ALTIMETER DATA OF ERS-1 (GEODETIC MISSION) AND TOPEX-POSEIDON , 1996 .

[40]  P. Novák High Resolution Constituents of the Earth’s Gravitational Field , 2009 .

[41]  P. Novák,et al.  Global Crust-Mantle Density Contrast Estimated from EGM2008, DTM2008, CRUST2.0, and ICE-5G , 2012, Pure and Applied Geophysics.

[42]  X. Pichon,et al.  Gravity Field Over the Atlantic Ocean , 2013 .

[43]  G. Masters,et al.  CRUST1.0: An Updated Global Model of Earth's Crust , 2012 .

[44]  Walter H. F. Smith On the accuracy of digital bathymetric data , 1993 .

[45]  Lars E. Sjöberg,et al.  A method of estimating the Moho density contrast with a tentative application of EGM08 and CRUST2.0 , 2011 .

[46]  William J. Hinze,et al.  Bouguer reduction density, why 2.67? , 2003 .

[47]  T. J. Sykes A correction for sediment load upon the ocean floor: Uniform versus varying sediment density estimations—implications for isostatic correction , 1996 .

[48]  J. Sclater,et al.  The Paleobathymetry of the Atlantic Ocean from the Jurassic to the Present , 1977, The Journal of Geology.

[49]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[50]  C. Bassin,et al.  The Current Limits of resolution for surface wave tomography in North America , 2000 .

[51]  The gains of small circular, square and rectangular filters for surface waves on a sphere , 1983 .

[52]  Chad Trabant,et al.  Data Products at the IRIS DMC: Stepping Stones for Research and Other Applications , 2012 .

[53]  Mei Xue,et al.  Slab‐plume interaction beneath the Pacific Northwest , 2010 .

[54]  H. Nataf,et al.  3SMAC: an a priori tomographic model of the upper mantle based on geophysical modeling , 1996 .

[55]  David L. Williams,et al.  On the thermal evolution of the oceanic lithosphere , 1975 .

[56]  Barbara Romanowicz,et al.  The three‐dimensional shear velocity structure of the mantle from the inversion of body, surface and higher‐mode waveforms , 2000 .

[57]  A. Dziewoński,et al.  Anisotropic shear‐wave velocity structure of the Earth's mantle: A global model , 2008 .

[58]  R. Tenzer,et al.  A global correlation of the step-wise consolidated crust-stripped gravity field quantities with the topography, bathymetry, and the CRUST 2.0 Moho boundary , 2009 .

[59]  R. Tenzer,et al.  The Bathymetric Stripping Corrections to Gravity Field Quantities for a Depth-Dependent Model of Seawater Density , 2012 .

[60]  M. Coffin Emplacement and subsidence of Indian Ocean plateaus and submarine ridges , 1992 .

[61]  Lapo Boschi,et al.  GyPSuM: A joint tomographic model of mantle density and seismic wave speeds , 2010 .

[62]  Roger N. Anderson,et al.  Elevation of ridges and evolution of the central Eastern Pacific. , 1971 .

[63]  M. Kaban,et al.  Subcrustal density inhomogeneities of Northern Eurasia as derived from the gravity data and isostatic models of the lithosphere , 1994 .

[64]  Peter Schwintzer,et al.  Density of the continental roots: compositional and thermal contributions , 2003 .

[65]  R. Allen,et al.  Lithosphere-asthenosphere interaction beneath the western United States from the joint inversion of body-wave traveltimes and surface-wave phase velocities , 2011 .

[66]  S. Hammer DEEP GRAVITY INTERPRETATION BY STRIPPING , 1963 .

[67]  Adam M. Dziewonski,et al.  Parametrically simple earth models consistent with geophysical data , 1975 .

[68]  K. Lambeck,et al.  Gravity fields of the terrestrial planets: Long‐wavelength anomalies and tectonics , 1980 .

[69]  Robert Tenzer,et al.  Harmonic coefficients of the Earth’s Spectral Crustal Model 180 – ESCM180 , 2014, Earth Science Informatics.

[70]  E. Scheer,et al.  Depth estimates from ratios of gravity, geoid, and gravity gradient anomalies , 1986 .

[71]  R. Carlson,et al.  Density of the ocean crust , 1984, Nature.

[72]  D. Tsoulis Spherical harmonic analysis of the CRUST 2.0 global crustal model , 2004 .

[73]  Jadwiga Jarzyna,et al.  Geophysics in near surface investigations , 2010 .

[74]  On the Computation of the Effect of the Attraction of Mountain Masses as disturbing the Apparent Astronomical Latitude of Stations in Geodetic Surveys , 1855 .

[75]  S. Myers,et al.  LLNL‐G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction , 2012 .

[76]  P. Novák,et al.  Spectral harmonic analysis and synthesis of Earth’s crust gravity field , 2011, Computational Geosciences.

[77]  Walter H. F. Smith,et al.  Marine gravity anomaly from Geosat and ERS 1 satellite altimetry , 1997 .

[78]  B. Romanowicz,et al.  Q tomography of the upper mantle using three‐component long‐period waveforms , 2004 .

[79]  J. Sclater,et al.  Depth and age in the north Pacific , 1988 .

[80]  S. Grand Mantle shear–wave tomography and the fate of subducted slabs , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[81]  J. Pratt I. On the attraction of the Himalaya Mountains, and of the elevated region beyond them, upon the plumb-line in India , 1855, Proceedings of the Royal Society of London.

[82]  A. B. WATTS,et al.  Isostasy and Flexure of the Lithosphere , 2001 .

[83]  R. Tenzer,et al.  Global atmospheric effects on the gravity field quantities , 2009 .

[84]  R. Tenzer,et al.  Assessment of Density Variations of Marine Sediments with Ocean and Sediment Depths , 2014, TheScientificWorldJournal.

[85]  J. O’Donnell,et al.  Lithosphere-asthenosphere interaction beneath Ireland from joint inversion of teleseismic P-wave delay times and GRACE gravity , 2011 .

[86]  A. Jäggi,et al.  The new combined satellite only model GOCO03s , 2012 .

[87]  P. Vogt,et al.  Predicting bathymetry from Geosat-ERM and shipborne profiles in the South Atlantic Ocean , 1992 .

[88]  C. Amante,et al.  ETOPO1 arc-minute global relief model : procedures, data sources and analysis , 2009 .

[89]  L. Sjöberg,et al.  Non-isostatic effects on crustal thickness: A study using CRUST2.0 in Fennoscandia , 2012 .

[90]  W. M. Kaula Earth's Gravity Field: Relation to Global Tectonics , 1970, Science.

[91]  B. Kennett,et al.  How to reconcile body-wave and normal-mode reference earth models , 1996 .

[92]  Sri Widiyantoro,et al.  Global seismic tomography: A snapshot of convection in the Earth: GSA Today , 1997 .

[93]  X. Pichon,et al.  Regional gravity anomalies in the Indian Ocean , 1969 .

[94]  K. Pearson VII. Note on regression and inheritance in the case of two parents , 1895, Proceedings of the Royal Society of London.

[95]  C. Murphy,et al.  The depth of the ocean through the Neogene , 1985 .

[96]  Yongshun John Chen,et al.  Crustal thickness anomalies in the North Atlantic Ocean basin from gravity analysis , 2011 .