A Probabilistic Analysis of a Simplified Biogeography-Based Optimization Algorithm

Biogeography-based optimization (BBO) is a population-based evolutionary algorithm (EA) that is based on the mathematics of biogeography. Biogeography is the study of the geographical distribution of biological organisms. We present a simplified version of BBO and perform an approximate analysis of the BBO population using probability theory. Our analysis provides approximate values for the expected number of generations before the population's best solution improves, and the expected amount of improvement. These expected values are functions of the population size. We quantify three behaviors as the population size increases: first, we see that the best solution in the initial randomly generated population improves; second, we see that the expected number of generations before improvement increases; and third, we see that the expected amount of improvement decreases.

[1]  Xin Yao,et al.  Benchmark Generator for CEC'2009 Competition on Dynamic Optimization , 2008 .

[2]  Dan Simon,et al.  Analytical and numerical comparisons of biogeography-based optimization and genetic algorithms , 2011, Inf. Sci..

[3]  C. Chen,et al.  Principles and Techniques in Combinatorics , 1992 .

[4]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[5]  M. Salem,et al.  Application of Biogeography based optimization in tuning a PID controller for nonlinear systems , 2012, 2012 IEEE International Conference on Complex Systems (ICCS).

[6]  Colin R. Reeves,et al.  Genetic Algorithms—Principles and Perspectives , 2002, Operations Research/Computer Science Interfaces Series.

[7]  M. Chowdhury,et al.  Benchmarks for testing evolutionary algorithms , 1998 .

[8]  Xin Yang,et al.  Improved opposition-based biogeography optimization , 2011, The Fourth International Workshop on Advanced Computational Intelligence.

[9]  Michael D. Vose,et al.  Modeling genetic algorithms with Markov chains , 1992, Annals of Mathematics and Artificial Intelligence.

[10]  Dan Simon,et al.  Markov Models for Biogeography-Based Optimization , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[11]  Rainer Storn,et al.  System design by constraint adaptation and differential evolution , 1999, IEEE Trans. Evol. Comput..

[12]  R. Macarthur,et al.  AN EQUILIBRIUM THEORY OF INSULAR ZOOGEOGRAPHY , 1963 .

[13]  Alex A. Freitas,et al.  Evolutionary Computation , 2002 .

[14]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[15]  Dan Simon,et al.  Oppositional biogeography-based optimization , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[16]  D. Fogel Evolutionary algorithms in theory and practice , 1997, Complex..

[17]  Thomas Stützle,et al.  Special Section on Ant Colony Optimization , 2002 .

[18]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[19]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[20]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[21]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[22]  D. L. Alspach,et al.  Gaussian Sum Approximations in Nonlinear Filtering and Control , 1974, Inf. Sci..

[23]  L. Lebensztajn,et al.  Multiobjective Biogeography-Based Optimization Based on Predator-Prey Approach , 2012, IEEE Transactions on Magnetics.

[24]  José Carlos Príncipe,et al.  A Markov Chain Framework for the Simple Genetic Algorithm , 1993, Evolutionary Computation.

[25]  Luc Devroye,et al.  Combinatorial methods in density estimation , 2001, Springer series in statistics.

[26]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[27]  F. Aluffi-Pentini,et al.  Global optimization and stochastic differential equations , 1985 .

[28]  Muhammad Naeem,et al.  Biogeography-based optimization for joint relay assignment and power allocation in cognitive radio systems , 2011, 2011 IEEE Symposium on Swarm Intelligence.

[29]  Thomas Bäck,et al.  Evolutionary computation: comments on the history and current state , 1997, IEEE Trans. Evol. Comput..

[30]  Yong Wang,et al.  A Multiobjective Optimization-Based Evolutionary Algorithm for Constrained Optimization , 2006, IEEE Transactions on Evolutionary Computation.

[31]  A. E. Eiben,et al.  Multiparent recombination in evolutionary computing , 2002 .

[32]  V. K. Panchal,et al.  Hybrid bio-inspired techniques for land cover feature extraction: A remote sensing perspective , 2012, Appl. Soft Comput..

[33]  Colin R. Reeves,et al.  Genetic Algorithms: Principles and Perspectives: A Guide to Ga Theory , 2002 .

[34]  R. Macarthur,et al.  The Theory of Island Biogeography , 1969 .

[35]  Hongwei Mo,et al.  Bio-geography based differential evolution for robot path planning , 2012, 2012 IEEE International Conference on Information and Automation.

[36]  Colin Reeves Genetic Algorithms , 2003, Handbook of Metaheuristics.

[37]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .

[38]  Peter J. Fleming,et al.  The Stud GA: A Mini Revolution? , 1998, PPSN.

[39]  J. Simonoff Smoothing Methods in Statistics , 1998 .

[40]  W. Marsden I and J , 2012 .

[41]  Dan Simon,et al.  Population distributions in biogeography-based optimization algorithms with elitism , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[42]  Roy Haines-Young,et al.  Biogeography , 1992, Vegetatio.

[43]  In Schoenauer,et al.  Parallel Problem Solving from Nature , 1990, Lecture Notes in Computer Science.

[44]  Peter J. Fleming,et al.  Performance optimization of gas turbine engine , 2005, Eng. Appl. Artif. Intell..