Using multipoles of the correlation function to measure H(z), DA(z) and β(z) from Sloan Digital Sky Survey luminous red galaxies

Galaxy clustering data can be used to measure the cosmic expansion history H(z), the angular-diameter distance D_A(z), and the linear redshift-space distortion parameter beta(z). Here we present a method for using effective multipoles of the galaxy two-point correlation function (\xi_0(s), \xi_2(s), \xi}_4(s), and \xi_6(s), with s denoting the comoving separation) to measure H(z), D_A(z)$, and beta(z), and validate it using LasDamas mock galaxy catalogs. Our definition of effective multipoles explicitly incorporates the discreteness of measurements, and treats the measured correlation function and its theoretical model on the same footing. We find that for the mock data, \xi_0+\xi_2+\xi_4 captures nearly all the information, and gives significantly stronger constraints on H(z), D_A(z), and beta(z), compared to using only \xi_0+\xi_2. We apply our method to the sample of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) without assuming a dark energy model or a flat Universe. We find that \xi}_4(s) deviates on scales of s<60Mpc/h from the measurement from mock data (in contrast to \xi_0(s), \xi_2(s), and \xi_6(s)), thus we only use \xi_0+\xi_2 for our fiducial constraints. We obtain {H(0.35), D_A(0.35), Omega_mh^2, beta(z)} = {79.6_{-8.7}^{+8.3} km/s/Mpc, 1057_{-87}^{+88}Mpc, 0.103\pm0.015, 0.44\pm0.15} using \xi_0+\xi_2. We find that H(0.35)r_s(z_d)/c and D_A(0.35)/r_s(z_d) (where r_s(z_d) is the sound horizon at the drag epoch) are more tightly constrained: {H(0.35)r_s(z_d)/c, D_A(0.35)/r_s(z_d)} = {0.0437_{-0.0043}^{+0.0041}, 6.48_{-0.43}^{+0.44}\} using \xi_0+\xi_2.

[1]  Lado Samushia,et al.  The clustering of galaxies in the SDSS-III DR9 Baryon Oscillation Spectroscopic Survey: testing deviations from Λ and general relativity using anisotropic clustering of galaxies , 2012, 1206.5309.

[2]  J. Brinkmann,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey:a large sample of mock galaxy catalogues , 2012, 1203.6609.

[3]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: Final data release and cosmological results , 2012, 1210.2130.

[4]  J. Brinkmann,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring structure growth using passive galaxies , 2012, 1203.6565.

[5]  D. Wake,et al.  The clustering of galaxies in the SDSS‐III Baryon Oscillation Spectroscopic Survey: cosmological implications of the large‐scale two‐point correlation function , 2012, 1203.6616.

[6]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: analysis of potential systematics , 2012, 1203.6499.

[7]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z = 0.57 from anisotropic clustering , 2012, 1203.6641.

[8]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[9]  A. Cuesta,et al.  A 2 per cent distance to $z$=0.35 by reconstructing baryon acoustic oscillations - I. Methods and application to the Sloan Digital Sky Survey , 2012, 1202.0090.

[10]  Yun Wang,et al.  A Comparative Study of Dark Energy Constraints from Current Observational Data , 2011, 1109.3172.

[11]  R. Nichol,et al.  Euclid Definition Study Report , 2011, 1110.3193.

[12]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: measuring the cosmic expansion history using the Alcock-Paczynski test and distant supernovae , 2011, 1108.2637.

[13]  S. Phleps,et al.  Cosmological implications from the full shape of the large-scale power spectrum of the SDSS DR7 luminous red galaxies , 2011, 1107.4097.

[14]  B. Reid,et al.  Towards an accurate model of the redshift-space clustering of haloes in the quasi-linear regime , 2011, 1105.4165.

[15]  E. Kazin,et al.  Improving measurements of H(z) and DA(z) by analysing clustering anisotropies , 2011, 1105.2037.

[16]  Chia-Hsun Chuang,et al.  Measurements of H(z) and DA(z) from the two-dimensional two-point correlation function of Sloan Digital Sky Survey luminous red galaxies , 2011, 1102.2251.

[17]  W. Percival,et al.  Interpreting large-scale redshift-space distortion measurements , 2011, 1102.1014.

[18]  R. Nichol,et al.  Measuring coherent motions in the universe , 2010, 1006.4630.

[19]  Yun Wang,et al.  A Robust Distance Measurement and Dark Energy Constraints from the Spherically-Averaged Correlation Function of Sloan Digital Sky Survey Luminous Red Galaxies , 2010, 1008.4822.

[20]  Lado Samushia,et al.  Designing a space-based galaxy redshift survey to probe dark energy , 2010, 1006.3517.

[21]  M. Blanton,et al.  REGARDING THE LINE-OF-SIGHT BARYONIC ACOUSTIC FEATURE IN THE SLOAN DIGITAL SKY SURVEY AND BARYON OSCILLATION SPECTROSCOPIC SURVEY LUMINOUS RED GALAXY SAMPLES , 2010, 1004.2244.

[22]  A. Szalay,et al.  THE BARYONIC ACOUSTIC FEATURE AND LARGE-SCALE CLUSTERING IN THE SLOAN DIGITAL SKY SURVEY LUMINOUS RED GALAXY SAMPLE , 2010 .

[23]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[24]  Alexander S. Szalay,et al.  Cosmological constraints from the clustering of the Sloan Digital Sky Survey DR7 luminous red galaxies (vol 404, pg 60, 2010) , 2009, 0907.1659.

[25]  A. Szalay,et al.  The Baryonic Acoustic Feature and Large-Scale Clustering in the SDSS LRG Sample , 2009, 0908.2598.

[26]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[27]  Durham,et al.  Cosmological parameter constraints from SDSS luminous red galaxies: a new treatment of large-scale clustering , 2009, 0901.2570.

[28]  S. Brough,et al.  The WiggleZ Dark Energy Survey: small-scale clustering of Lyman-break galaxies at z < 1 , 2009, 0901.2587.

[29]  V. Martínez,et al.  RELIABILITY OF THE DETECTION OF THE BARYON ACOUSTIC PEAK , 2008, 0812.2154.

[30]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[31]  E. Gaztañaga,et al.  Clustering of luminous red galaxies – I. Large-scale redshift-space distortions , 2008, 0807.2460.

[32]  Y. Wang,et al.  SPACE: the spectroscopic all-sky cosmic explorer , 2008, 0804.4433.

[33]  E. Gaztañaga,et al.  Clustering of luminous red galaxies – IV. Baryon acoustic peak in the line-of-sight direction and a direct measurement of H(z) , 2008, 0807.3551.

[34]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[35]  A. Szalay,et al.  Large-Scale Anisotropic Correlation Function of SDSS Luminous Red Galaxies , 2007, 0711.3640.

[36]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[37]  Alexander S. Szalay,et al.  Measuring the Baryon Acoustic Oscillation scale using the Sloan Digital Sky Survey and 2dF Galaxy Redshift Survey , 2007 .

[38]  R. Nichol,et al.  Measuring the Baryon Acoustic Oscillation scale using the SDSS and 2dFGRS , 2007, 0705.3323.

[39]  S. Roweis,et al.  K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.

[40]  O. Lahav,et al.  Cosmological baryonic and matter densities from 600 000 SDSS luminous red galaxies with photometric redshifts , 2006, astro-ph/0605303.

[41]  R. Nichol,et al.  The clustering of luminous red galaxies in the Sloan Digital Sky Survey imaging data , 2006, astro-ph/0605302.

[42]  Walter A. Siegmund,et al.  The 2.5 m Telescope of the Sloan Digital Sky Survey , 2006, astro-ph/0602326.

[43]  Yun Wang,et al.  Dark Energy Constraints from Baryon Acoustic Oscillations , 2006, astro-ph/0601163.

[44]  G. Huetsi Acoustic oscillations in the SDSS DR4 luminous red galaxy sample power spectrum , 2005, astro-ph/0512201.

[45]  J. Brinkmann,et al.  New York University Value-Added Galaxy Catalog: A Galaxy Catalog Based on New Public Surveys , 2005 .

[46]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[47]  R. Nichol,et al.  The Intermediate-Scale Clustering of Luminous Red Galaxies , 2004, astro-ph/0411557.

[48]  J. Brinkmann,et al.  NYU-VAGC: a galaxy catalog based on new public surveys , 2004, astro-ph/0410166.

[49]  R. Nichol,et al.  The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.

[50]  R. Nichol,et al.  The 3D power spectrum of galaxies from the SDSS , 2003, astro-ph/0310725.

[51]  D. Eisenstein,et al.  Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys , 2003, astro-ph/0307460.

[52]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[53]  C. Blake,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL: MARCH 17, 2003 Preprint typeset using L ATEX style emulateapj v. 26/01/00 OVER 5000 DISTANT EARLY-TYPE GALAXIES IN COMBO-17: A RED SEQUENCE AND ITS EVOLUTION SINCE Z ∼ 1 , 2003 .

[54]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[55]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[56]  S. Landy The Pairwise Velocity Distribution Function of Galaxies in the LCRS, 2dF, and SDSS Redshift Surveys , 2002, astro-ph/0202130.

[57]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[58]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[59]  G. Luppino,et al.  Large scale cosmic shear measurements , 2000, astro-ph/0003338.

[60]  G. Bernstein,et al.  Detection of weak gravitational lensing distortions of distant galaxies by cosmic dark matter at large scales , 2000, Nature.

[61]  Cambridge,et al.  Detection of weak gravitational lensing by large-scale structure , 2000, astro-ph/0003008.

[62]  S. Maddox,et al.  The PSCz catalogue , 1999, astro-ph/9909191.

[63]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[64]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[65]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[66]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[67]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[68]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[69]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[70]  J. Peacock,et al.  Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.

[71]  A. Hamilton Measuring Omega and the real correlation function from the redshift correlation function , 1992 .

[72]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[73]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[74]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[75]  B. Paczyński,et al.  An evolution free test for non-zero cosmological constant , 1979, Nature.