Effect of xylitol and other carbon sources on Streptococcus pneumoniae biofilm formation and gene expression in vitro

Kurola P, Tapiainen T, Sevander J, Kaijalainen T, Leinonen M, Uhari M, Saukkoriipi A. Effect of xylitol and other carbon sources on Streptococcus pneumoniae biofilm formation and gene expression in vitro. APMIS 2010; 119: 135–42.

[1]  M. Leinonen,et al.  Biofilm formation by Streptococcus pneumoniae isolates from paediatric patients , 2010, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[2]  E. Tuomanen,et al.  Early biofilm formation on microtiter plates is not correlated with the invasive disease potential of Streptococcus pneumoniae. , 2010, Microbial pathogenesis.

[3]  T. Tapiainen,et al.  Xylitol and capsular gene expression in Streptococcus pneumoniae. , 2009, Journal of medical microbiology.

[4]  Melissa Carter,et al.  Sialic acid: a preventable signal for pneumococcal biofilm formation, colonization, and invasion of the host. , 2009, The Journal of infectious diseases.

[5]  G. James,et al.  In vitro susceptibility of established biofilms composed of a clinical wound isolate of Pseudomonas aeruginosa treated with lactoferrin and xylitol. , 2009, International journal of antimicrobial agents.

[6]  G. Ehrlich,et al.  Characterization of biofilm matrix, degradation by DNase treatment and evidence of capsule downregulation in Streptococcus pneumoniae clinical isolates , 2008, BMC Microbiology.

[7]  E. Söderling,et al.  Growth Inhibition of Streptococcus mutans with Low Xylitol Concentrations , 2008, Current Microbiology.

[8]  K. Sauer,et al.  Characterization of Colony Morphology Variants Isolated from Streptococcus pneumoniae Biofilms , 2006, Journal of bacteriology.

[9]  S. Khan,et al.  Characterization of In Vitro Biofilm-Associated Pneumococcal Phase Variants of a Clinically Relevant Serotype 3 Clone , 2006, Journal of Clinical Microbiology.

[10]  Ernesto García,et al.  Biofilm Formation by Streptococcus pneumoniae: Role of Choline, Extracellular DNA, and Capsular Polysaccharide in Microbial Accretion , 2006, Journal of bacteriology.

[11]  P. Andrew,et al.  Switch from planktonic to sessile life: a major event in pneumococcal pathogenesis , 2006, Molecular microbiology.

[12]  Katsuyama Masako,et al.  A novel method to control the balance of skin microflora Part 2. A study to assess the effect of a cream containing farnesol and xylitol on atopic dry skin. , 2005 .

[13]  J. Claverys,et al.  Antibacterial Activity of a Competence-Stimulating Peptide in Experimental Sepsis Caused by Streptococcus pneumoniae , 2004, Antimicrobial Agents and Chemotherapy.

[14]  Angela H Hogan,et al.  Autolysin-targeted LightCycler assay including internal process control for detection of Streptococcus pneumoniae DNA in clinical samples. , 2004, Journal of medical microbiology.

[15]  C. Y. Loo,et al.  Involvement of an Inducible Fructose Phosphotransferase Operon in Streptococcus gordonii Biofilm Formation , 2003, Journal of bacteriology.

[16]  H. Kuramitsu,et al.  Multiple Streptococcus mutans Genes Are Involved in Biofilm Formation , 2002, Applied and Environmental Microbiology.

[17]  J. Costerton,et al.  Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms , 2002, Clinical Microbiology Reviews.

[18]  T. Tapiainen,et al.  Xylitol Concentrations in the Saliva of Children After Chewing Xylitol Gum or Consuming a Xylitol Mixture , 2002, European Journal of Clinical Microbiology and Infectious Diseases.

[19]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[20]  C. Dowson,et al.  Spontaneous sequence duplication within an open reading frame of the pneumococcal type 3 capsule locus causes high‐frequency phase variation , 2001, Molecular microbiology.

[21]  P. Fives-Taylor,et al.  Streptococcus parasanguisFimbria-Associated Adhesin Fap1 Is Required for Biofilm Formation , 2001, Infection and Immunity.

[22]  T. Tapiainen,et al.  Effect of Xylitol on Growth of Streptococcus pneumoniae in the Presence of Fructose and Sorbitol , 2001, Antimicrobial Agents and Chemotherapy.

[23]  D. Corliss,et al.  Streptococcus gordonii Biofilm Formation: Identification of Genes that Code for Biofilm Phenotypes , 2000, Journal of bacteriology.

[24]  M. Leinonen,et al.  Quantitative analysis of the effect of xylitol on pneumococcal nasal colonisation in rats. , 1999, FEMS microbiology letters.

[25]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[26]  M. Uhari,et al.  A Novel Use of Xylitol Sugar in Preventing Acute Otitis Media , 1998, Pediatrics.

[27]  M. Uhari,et al.  Antiadhesive effects of xylitol on otopathogenic bacteria. , 1998, The Journal of antimicrobial chemotherapy.

[28]  M. Uhari,et al.  Xylitol chewing gum in prevention of acute otitis media: double blind randomised trial , 1996, BMJ.

[29]  K. Isotupa,et al.  Xylitol Chewing Gums and Caries Rates: A 40-month Cohort Study , 1995, Journal of dental research.

[30]  M. Kawashima,et al.  A novel method to control the balance of skin microflora Part 2. A study to assess the effect of a cream containing farnesol and xylitol on atopic dry skin. , 2005, Journal of dermatological science.