Real Root Isolation of Polynomial Equations Based on Hybrid Computation

A new algorithm for real root isolation of zero-dimensional nonsingular square polynomial systems based on hybrid computation is presented in this paper. First, approximate the (complex) roots of the given polynomial equations via homotopy continuation method. Then, for each approximate root, an initial box relying on the Kantorovich theorem is constructed, which contains the corresponding accurate root. Finally, the Krawczyk interval iteration with interval arithmetic is applied to the initial boxes so as to check whether or not the corresponding approximate roots are real and to obtain the real root isolation boxes. Moreover, an empirical construction of initial box is provided for speeding-up the computation in practice. Our experiments on many benchmarks show that the new hybrid method is very efficient. The method can find all real roots of any given zero-dimensional nonsingular square polynomial systems provided that the homotopy continuation method can find all complex roots of the equations.

[1]  Zhengfeng Yang,et al.  Verified error bounds for real solutions of positive-dimensional polynomial systems , 2013, ISSAC '13.

[2]  Bernard Mourrain,et al.  The DMM bound: multivariate (aggregate) separation bounds , 2010, ISSAC.

[3]  Bican Xia,et al.  DISCOVERER: a tool for solving semi-algebraic systems , 2007, ACCA.

[4]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[5]  Ting Zhang,et al.  Real solution isolation using interval arithmetic , 2006, Comput. Math. Appl..

[6]  Anton Leykin,et al.  Robust Certified Numerical Homotopy Tracking , 2011, Foundations of Computational Mathematics.

[7]  Frank Sottile,et al.  ALGORITHM XXX: ALPHACERTIFIED: CERTIFYING SOLUTIONS TO POLYNOMIAL SYSTEMS , 2011 .

[8]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[9]  Lihong Zhi,et al.  Computing the multiplicity structure from geometric involutive form , 2008, ISSAC '08.

[10]  Anton Leykin,et al.  Certified Numerical Homotopy Tracking , 2009, Exp. Math..

[11]  Alkiviadis G. Akritas,et al.  Polynomial real root isolation using Descarte's rule of signs , 1976, SYMSAC '76.

[12]  Jorge Mujica,et al.  Complex analysis in Banach spaces , 1986 .

[13]  Xiao-Shan Gao,et al.  Root isolation for bivariate polynomial systems with local generic position method , 2009, ISSAC '09.

[14]  Xiao-Shan Gao,et al.  Complete numerical isolation of real zeros in zero-dimensional triangular systems , 2007, ISSAC '07.

[15]  Changbo Chen,et al.  Real Root Isolation of Regular Chains , 2009, ASCM.

[16]  Tien-Yien Li,et al.  Solving real polynomial systems with real homotopies , 1993 .

[17]  Xiao-Shan Gao,et al.  Root isolation of zero-dimensional polynomial systems with linear univariate representation , 2011, J. Symb. Comput..

[18]  Bruno Buchberger,et al.  Computer algebra symbolic and algebraic computation , 1982, SIGS.

[19]  Zhonggang Zeng,et al.  Multiple zeros of nonlinear systems , 2011, Math. Comput..

[20]  Elias P. Tsigaridas,et al.  Univariate real root isolation in multiple extension fields , 2012, ISSAC.

[21]  Anton Leykin,et al.  Higher-Order Deflation for Polynomial Systems With Isolated Singular Solutions , 2006, math/0602031.

[22]  G. E. Collins,et al.  Real Zeros of Polynomials , 1983 .

[23]  Anton Leykin,et al.  Newton's method with deflation for isolated singularities of polynomial systems , 2006, Theor. Comput. Sci..

[24]  Bican Xia,et al.  An Algorithm for Isolating the Real Solutions of Semi-algebraic Systems , 2002, J. Symb. Comput..

[25]  R. Tapia,et al.  Optimal Error Bounds for the Newton–Kantorovich Theorem , 1974 .

[26]  Fabrice Rouillier,et al.  Solving Zero-Dimensional Systems Through the Rational Univariate Representation , 1999, Applicable Algebra in Engineering, Communication and Computing.

[27]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[28]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[29]  T. Y. Li Numerical solution of multivariate polynomial systems by homotopy continuation methods , 2008 .

[30]  Siegfried M. Rump,et al.  Verification methods: rigorous results using floating-point arithmetic , 2010, Acta Numerica.

[31]  Bernard Mourrain,et al.  On continued fraction expansion of real roots of polynomial systems, complexity and condition numbers , 2011, Theor. Comput. Sci..