Personalization of Web Search Using Social Signals

Over the last few years, Web has changed significantly. Emergence of social networksSocial network and Web 2.0 have enabled people to interact with Web document in new ways not possible before. In this paper, we present PERSOSE Personalized search engine (PERSOSE) a new search engineSearch engine that personalizes the search results based on users’ social actions.Social actions Although the users’ social actions may sometimes seem irrelevant to the search, we show that they are actually useful for personalization.Personalization We propose a new relevance modelRelevance model called persocial relevance model utilizing three levels of social signals to improve the Web search.Web search We show how each level of persocial model (users’ social actions, friends’ social actions and social expansion) can be built on top of the previous level and how each level improves the search results. Furthermore, we develop several approaches to integrate persocial relevance model into the textual Web search process. We show how PERSOSE Personalized search engine (PERSOSE) can run effectively on 14 million WikipediaWikipedia articles and social data from real FacebookFacebook@Facebook users and generate accurate search results. Using PERSOSE, we performed a set of experiments and showed the superiority of our proposed approaches. We also showed how each level of our model improves the accuracy of search results.

[1]  Aya Soffer,et al.  Social search and discovery using a unified approach , 2009, HT '09.

[2]  Alessandro Bozzon,et al.  Extending Search to Crowds: A Model-Driven Approach , 2012, SeCO Book.

[3]  Paul-Alexandru Chirita,et al.  Personalized query expansion for the web , 2007, SIGIR.

[4]  Craig A. N. Soules,et al.  Connections: using context to enhance file search , 2005, SOSP '05.

[5]  Laks V. S. Lakshmanan,et al.  Efficient network aware search in collaborative tagging sites , 2008, Proc. VLDB Endow..

[6]  Abdulmotaleb El-Saddik,et al.  Folksonomy-boosted social media search and ranking , 2011, ICMR.

[7]  Barry Smyth,et al.  Google Shared. A Case-Study in Social Search , 2009, UMAP.

[8]  Peter Pirolli,et al.  Exploring the cognitive consequences of social search , 2009, CHI Extended Abstracts.

[9]  Andreas Hotho,et al.  Information Retrieval in Folksonomies: Search and Ranking , 2006, ESWC.

[10]  Stephen E. Robertson,et al.  Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval , 1994, SIGIR '94.

[11]  Vikas Kumar,et al.  CrowdSearch: exploiting crowds for accurate real-time image search on mobile phones , 2010, MobiSys '10.

[12]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[13]  Alessandro Bozzon,et al.  Answering search queries with CrowdSearcher , 2012, WWW.

[14]  Marco Brambilla,et al.  A revenue sharing mechanism for federated search and advertising , 2012, WWW.

[15]  Ioannis Konstas,et al.  On social networks and collaborative recommendation , 2009, SIGIR.

[16]  Gerhard Weikum,et al.  Efficient top-k querying over social-tagging networks , 2008, SIGIR '08.

[17]  Ed H. Chi,et al.  Towards a model of understanding social search , 2008, SSM '08.

[18]  Christoph Meinel,et al.  Web Search Personalization Via Social Bookmarking and Tagging , 2007, ISWC/ASWC.

[19]  Paolo Ferragina,et al.  A personalized search engine based on Web‐snippet hierarchical clustering , 2008, Softw. Pract. Exp..

[20]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[21]  Ali Shiri,et al.  Social search: A taxonomy of, and a user-centred approach to, social web search , 2011, Program.

[22]  Luca Foschini,et al.  TC-SocialRank: Ranking the Social Web , 2009, WAW.

[23]  Tim Kraska,et al.  CrowdDB: answering queries with crowdsourcing , 2011, SIGMOD '11.

[24]  Jaana Kekäläinen,et al.  Cumulated gain-based evaluation of IR techniques , 2002, TOIS.

[25]  Xiaolong Zhang,et al.  SNDocRank: a social network-based video search ranking framework , 2010, MIR '10.

[26]  Yong Yu,et al.  Optimizing web search using social annotations , 2007, WWW '07.

[27]  Ken C. K. Lee,et al.  On top-k social web search , 2010, CIKM.

[28]  Hongxia Jin,et al.  Exploring online social activities for adaptive search personalization , 2010, CIKM.

[29]  Stefano Mizzaro,et al.  A social approach to context-aware retrieval , 2011, World Wide Web.

[30]  Hong Joo Lee,et al.  Use of social network information to enhance collaborative filtering performance , 2010, Expert Syst. Appl..

[31]  Rob Koper,et al.  Ecology of social search for learning resources , 2009 .

[32]  Yong Yu,et al.  Exploring folksonomy for personalized search , 2008, SIGIR '08.

[33]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[34]  Krishna P. Gummadi,et al.  Exploiting Social Networks for Internet Search , 2006, HotNets.

[35]  Ido Guy,et al.  Personalized social search based on the user's social network , 2009, CIKM.

[36]  David M. Pennock,et al.  Applying collaborative filtering techniques to movie search for better ranking and browsing , 2007, KDD '07.

[37]  Xiaolong Zhang,et al.  Social network document ranking , 2010, JCDL '10.

[38]  Damon Horowitz,et al.  The anatomy of a large-scale social search engine , 2010, WWW '10.

[39]  Xiaolong Zhang,et al.  SNDocRank: document ranking based on social networks , 2010, WWW '10.

[40]  Wolfgang Nejdl,et al.  Using ODP metadata to personalize search , 2005, SIGIR '05.