Discriminants of Taft Algebra Smash Products and Applications

[1]  K. Brown,et al.  Azumaya loci and discriminant ideals of PI algebras , 2017, Advances in Mathematics.

[2]  Jason Gaddis,et al.  On the discriminant of twisted tensor products , 2016, 1606.03105.

[3]  M. Yakimov,et al.  Noncommutative discriminants via Poisson primes , 2016, 1603.02585.

[4]  Jeffrey Bergen Taft algebras acting on associative algebras , 2015 .

[5]  Chelsea M. Walton,et al.  Actions of some pointed Hopf algebras on path algebras of quivers , 2014, 1410.7696.

[6]  James J. Zhang,et al.  The discriminant criterion and automorphism groups of quantized algebras , 2014, 1402.6625.

[7]  James J. Zhang,et al.  The discriminant controls automorphism groups of noncommutative algebras , 2014, 1401.0793.

[8]  Jason Gaddis Two-Parameter Analogs of the Heisenberg Enveloping Algebra , 2013, 1308.4427.

[9]  Sei-Qwon Oh Poisson Prime Ideals of Poisson Polynomial Rings , 2007 .

[10]  Sei-Qwon Oh Poisson Polynomial Rings , 2006 .

[11]  Kenneth A. Brown,et al.  Lectures on Algebraic Quantum Groups , 2002 .

[12]  I. Gordon,et al.  Poisson orders, symplectic reflection algebras and representation theory , 2002, math/0201042.

[13]  J. Alev,et al.  Rigidité des plongements des quotients primitifs minimaux de Ug(sl(2)) dans l’algebre quantique de Weyl-Hayashi , 1996, Nagoya Mathematical Journal.

[14]  E. Kirkman,et al.  q-analogs of harmonic oscillators and related rings , 1993 .

[15]  K. Goodearl Prime ideals in skew polynomial rings and quantized Weyl algebras , 1992 .

[16]  J. Alev,et al.  Derivations et automorphismes de quelques algebras quantiques , 1992 .

[17]  S. Montgomery Outer Automorphisms of Semi‐Prime Rings , 1978 .

[18]  E. Taft The Order of the Antipode of Finite-dimensional Hopf Algebra. , 1971, Proceedings of the National Academy of Sciences of the United States of America.