Rheological behaviour of nanofluids containing tube / rod-like nanoparticles

Experiments are carried out on the rheological behaviour of ethylene glycol (EG) based titanate nanotubes (TNT) nanofluids containing 0.5, 1.0, 2.0, 4.0 and 8.0 wt.% TNT at 20–60 °C. The results show a very strong shear thinning behaviour of the TNT nanofluids and big influences of particle concentration and temperature on the zero shear viscosity (ZSV) and high shear viscosity (HSV), for which the conventional form of Brenner & Condiff Equation fails to predict. Theoretical analyses show that these experimentally observed phenomena can be well interpreted by the conventional colloid theory if particle shape and aggregation effects are taken into account and different relative importance of the Brownian diffusion and convection at different shear rates. It is suggested that nanofluids containing tube / rod-like nanoparticles with effective aspect ratio (ra) and effective volume fraction (φa) can be classified into dilute nanofluids with 0 < φa < 1/ra2, semi-dilute nanofluids with 1/ra2 < φa < 1/ra, semi-concentrated and concentrated nanofluids with 1/ra < φa.

[1]  J. Buongiorno,et al.  Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids , 2006 .

[2]  S. Edwards,et al.  Dynamics of rod-like macromolecules in concentrated solution. Part 2 , 1978 .

[3]  Thomas J. Dougherty,et al.  A Mechanism for Non‐Newtonian Flow in Suspensions of Rigid Spheres , 1959 .

[4]  Haifeng Zhu,et al.  A novel one-step chemical method for preparation of copper nanofluids. , 2004, Journal of colloid and interface science.

[5]  Nandy Putra,et al.  Pool boiling of nano-fluids on horizontal narrow tubes , 2003 .

[6]  Yulong Ding,et al.  Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions , 2004 .

[7]  Ann Vanelstraete,et al.  Practical test methods for measuring the zero shear viscosity of bituminous binders , 2004 .

[8]  Albert Einstein,et al.  Berichtigung zu meiner Arbeit: „Eine neue Bestimmung der Moleküldimensionen”︁ [AdP 34, 591 (1911)] , 2005, Annalen der Physik.

[9]  J. W. Goodwin Colloids and Interfaces with Surfactants and Polymers: An Introduction , 2004 .

[10]  S. Edwards,et al.  Dynamics of concentrated polymer systems. Part 3.—The constitutive equation , 1978 .

[11]  J. W. Goodwin,et al.  Rheology for Chemists: An Introduction , 2008 .

[12]  Y. Xuan,et al.  Investigation on Convective Heat Transfer and Flow Features of Nanofluids , 2003 .

[13]  Yulong Ding,et al.  Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids , 2005 .

[14]  H. Masuda,et al.  ALTERATION OF THERMAL CONDUCTIVITY AND VISCOSITY OF LIQUID BY DISPERSING ULTRA-FINE PARTICLES. DISPERSION OF AL2O3, SIO2 AND TIO2 ULTRA-FINE PARTICLES , 1993 .

[15]  S. Edwards,et al.  Dynamics of concentrated polymer systems. Part 1.—Brownian motion in the equilibrium state , 1978 .

[16]  Y. Xuan,et al.  Aggregation structure and thermal conductivity of nanofluids , 2003 .

[17]  Robert M Ziff,et al.  Effect of monomer geometry on the fractal structure of colloidal rod aggregates. , 2004, Physical review letters.

[18]  Yulong Ding,et al.  Formulation of nanofluids for natural convective heat transfer applications , 2005 .

[19]  Donggeun Lee,et al.  A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension. , 2006, The journal of physical chemistry. B.

[20]  Chongyoup Kim,et al.  VISCOSITY AND THERMAL CONDUCTIVITY OF COPPER OXIDE NANOFLUID DISPERSED IN ETHYLENE GLYCOL , 2005 .

[21]  D. W. Condiff,et al.  Transport mechanics in systems of orientable particles. IV. convective transport , 1974 .

[22]  P. Meakin,et al.  Effect of aggregation on thermal conduction in colloidal nanofluids , 2006 .

[23]  Stephen U. S. Choi Enhancing thermal conductivity of fluids with nano-particles , 1995 .

[24]  Yulong Ding,et al.  Effect on Heat Transfer of Particle Migration in Suspensions of Nanoparticles Flowing Through Minichannels , 2004 .

[26]  Haisheng Chen,et al.  Rheological behaviour of ethylene glycol based titania nanofluids , 2007 .

[27]  Jinlin Wang,et al.  Measurements of nanofluid viscosity and its implications for thermal applications , 2006 .

[28]  R. Prasher,et al.  Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). , 2006, Nano letters.

[29]  Amyn S. Teja,et al.  Density, Viscosity, and Thermal Conductivity of Aqueous Ethylene, Diethylene, and Triethylene Glycol Mixtures between 290 K and 450 K , 2003 .

[30]  T. Waite,et al.  Aggregation Kinetics and Fractal Structure of γ-Alumina Assemblages , 2001 .

[31]  Sarit K. Das,et al.  Heat Transfer in Nanofluids—A Review , 2006 .

[32]  S. Edwards,et al.  Dynamics of concentrated polymer systems. Part 2.—Molecular motion under flow , 1978 .

[33]  Chunqing Tan,et al.  Rheological behaviour of nanofluids , 2007 .

[34]  W. Tseng,et al.  Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions , 2003 .

[35]  E. Grulke,et al.  Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow , 2005 .

[36]  Yulong Ding,et al.  Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids) , 2004 .

[37]  Sam F. Edwards,et al.  Dynamics of rod-like macromolecules in concentrated solution. Part 1 , 1978 .

[38]  W. Tseng,et al.  Dispersion and rheology of nickel nanoparticle inks , 2006 .

[39]  D. Cahill,et al.  Nanofluids for thermal transport , 2005 .

[40]  R. Larson The Structure and Rheology of Complex Fluids , 1998 .

[41]  Young I Cho,et al.  HYDRODYNAMIC AND HEAT TRANSFER STUDY OF DISPERSED FLUIDS WITH SUBMICRON METALLIC OXIDE PARTICLES , 1998 .

[42]  Somchai Wongwises,et al.  Critical review of heat transfer characteristics of nanofluids , 2007 .

[43]  E. Grulke,et al.  Thermal and rheological properties of carbon nanotube-in-oil dispersions , 2006 .

[44]  W. Roetzel,et al.  Pool boiling characteristics of nano-fluids , 2003 .

[45]  Yulong Ding,et al.  Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids) , 2006 .

[46]  Yulong Ding,et al.  Effect of particle migration on heat transfer in suspensions of nanoparticles flowing through minichannels , 2005 .

[47]  Robert C. Armstrong,et al.  A Rheological Equation of State for Semiconcentrated Fiber Suspensions , 1984 .

[48]  Chunqing Tan,et al.  Heat transfer and flow behaviour of aqueous suspensions of titanate nanotubes (nanofluids) , 2008 .

[49]  B. Wang,et al.  A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles , 2003 .

[50]  H. Barnes,et al.  An introduction to rheology , 1989 .

[51]  J. Sambles,et al.  Slow waves caused by cuts perpendicular to a single subwavelength slit in metal , 2007 .

[52]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .