Activation of P-TEFb by Androgen Receptor-Regulated Enhancer RNAs in Castration-Resistant Prostate Cancer.

[1]  R. Evans,et al.  Inflammation-sensitive super enhancers form domains of coordinately regulated enhancer RNAs , 2015, Proceedings of the National Academy of Sciences.

[2]  Yijun Ruan,et al.  B Cell Super-Enhancers and Regulatory Clusters Recruit AID Tumorigenic Activity , 2014, Cell.

[3]  Tae-Kyung Kim,et al.  Enhancer RNA facilitates NELF release from immediate early genes. , 2014, Molecular cell.

[4]  W. Isaacs,et al.  AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. , 2014, The New England journal of medicine.

[5]  P. Kantoff,et al.  Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation , 2014, Proceedings of the National Academy of Sciences.

[6]  Lisa Muniz,et al.  3′ end formation of pre-mRNA and phosphorylation of Ser2 on the RNA polymerase II CTD are reciprocally coupled in human cells , 2014, Genes & development.

[7]  M. Rosenfeld,et al.  Brd4 and JMJD6-Associated Anti-Pause Enhancers in Regulation of Transcriptional Pause Release , 2013, Cell.

[8]  R. Shiekhattar,et al.  Long Noncoding RNAs Usher In a New Era in the Biology of Enhancers , 2013, Cell.

[9]  L. Grøntved,et al.  eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. , 2013, Molecular cell.

[10]  B. Ren,et al.  Enhancing Pluripotency and Lineage Specification , 2013, Science.

[11]  D. Tindall,et al.  Posttranslational Modification of the Androgen Receptor in Prostate Cancer , 2013, International journal of molecular sciences.

[12]  C. Glass,et al.  Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation , 2013, Nature.

[13]  C. Glass,et al.  Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription , 2013, Nature.

[14]  B. Monia,et al.  Preclinical evaluation of the toxicological effects of a novel constrained ethyl modified antisense compound targeting signal transducer and activator of transcription 3 in mice and cynomolgus monkeys. , 2013, Nucleic acid therapeutics.

[15]  R. Elkon,et al.  eRNAs are required for p53-dependent enhancer activity and gene transcription. , 2013, Molecular cell.

[16]  Chao Zhang,et al.  Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II , 2012, Nature Structural &Molecular Biology.

[17]  Kurt Miller,et al.  Increased survival with enzalutamide in prostate cancer after chemotherapy. , 2012, The New England journal of medicine.

[18]  Colby G Starker,et al.  In vivo Genome Editing Using High Efficiency TALENs , 2012, Nature.

[19]  Benjamin J. Raphael,et al.  The Mutational Landscape of Lethal Castrate Resistant Prostate Cancer , 2012, Nature.

[20]  Qiang Zhou,et al.  RNA polymerase II elongation control. , 2012, Annual review of biochemistry.

[21]  S. Spicuglia,et al.  H3K4 tri‐methylation provides an epigenetic signature of active enhancers , 2011, The EMBO journal.

[22]  Arturo Molina,et al.  Abiraterone and increased survival in metastatic prostate cancer. , 2011, The New England journal of medicine.

[23]  V. Corces,et al.  Enhancer function: new insights into the regulation of tissue-specific gene expression , 2011, Nature Reviews Genetics.

[24]  C. Glass,et al.  Reprogramming Transcription via Distinct Classes of Enhancers Functionally Defined by eRNA , 2011, Nature.

[25]  T. Derrien,et al.  Long Noncoding RNAs with Enhancer-like Function in Human Cells , 2010, Cell.

[26]  P. Dorrestein,et al.  PHF8 Mediates Histone H4 Lysine 20 Demethylation Events Involved in Cell Cycle Progression , 2010, Nature.

[27]  J. Ragoussis,et al.  A Large Fraction of Extragenic RNA Pol II Transcription Sites Overlap Enhancers , 2010, PLoS biology.

[28]  J. Humm,et al.  Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1–2 study , 2010, The Lancet.

[29]  Clifford A. Meyer,et al.  Nucleosome Dynamics Define Transcriptional Enhancers , 2010, Nature Genetics.

[30]  H. Scher,et al.  Development of a Second-Generation Antiandrogen for Treatment of Advanced Prostate Cancer , 2009, Science.

[31]  Pier Paolo Pandolfi,et al.  Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate , 2009, Nature Genetics.

[32]  M. Dowsett,et al.  Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[33]  D. Tindall,et al.  Ligand-independent Androgen Receptor Activity Is Activation Function-2-independent and Resistant to Antiandrogens in Androgen Refractory Prostate Cancer Cells* , 2006, Journal of Biological Chemistry.

[34]  Michael R. Green,et al.  Transcriptional regulatory elements in the human genome. , 2006, Annual review of genomics and human genetics.

[35]  B. Peterlin,et al.  Controlling the elongation phase of transcription with P-TEFb. , 2006, Molecular cell.

[36]  D. Tindall,et al.  Prostate cancer cells use genetic and epigenetic mechanisms for progression to androgen independence , 2006, Genes, chromosomes & cancer.

[37]  T. Kiss,et al.  Regulation of Polymerase II Transcription by 7SK snRNA: Two Distinct RNA Elements Direct P-TEFb and HEXIM1 Binding , 2006, Molecular and Cellular Biology.

[38]  Megan F. Cole,et al.  Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells , 2005, Cell.

[39]  Qiang Zhou,et al.  Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. , 2005, Molecular cell.

[40]  J. Brady,et al.  The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. , 2005, Molecular cell.

[41]  Dongmei Cheng,et al.  Analysis of the Large Inactive P-TEFb Complex Indicates That It Contains One 7SK Molecule, a Dimer of HEXIM1 or HEXIM2, and Two P-TEFb Molecules Containing Cdk9 Phosphorylated at Threonine 186* , 2005, Journal of Biological Chemistry.

[42]  G. Glinsky,et al.  Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. , 2005, The Journal of clinical investigation.

[43]  D. Tindall,et al.  Mechanisms of androgen-refractory prostate cancer. , 2004, The New England journal of medicine.

[44]  M. Becich,et al.  Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[45]  J. Lis,et al.  Coordination of transcription, RNA processing, and surveillance by P-TEFb kinase on heat shock genes. , 2004, Molecular cell.

[46]  J. Greenblatt,et al.  Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. , 2001, Genes & development.

[47]  Tamás Kiss,et al.  7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes , 2001, Nature.

[48]  Qiang Zhou,et al.  The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription , 2001, Nature.

[49]  D. Feldman,et al.  The development of androgen-independent prostate cancer , 2001, Nature Reviews Cancer.

[50]  Hiroshi Handa,et al.  NELF, a Multisubunit Complex Containing RD, Cooperates with DSIF to Repress RNA Polymerase II Elongation , 1999, Cell.

[51]  J. Milton,et al.  Identification of multiple cyclin subunits of human P-TEFb. , 1998, Genes & development.

[52]  M. Singh,et al.  HIV‐1 tat protein stimulates transcription by binding to a U‐rich bulge in the stem of the TAR RNA structure. , 1990, The EMBO journal.

[53]  N. Sonenberg,et al.  A bulge structure in HIV-1 TAR RNA is required for Tat binding and Tat-mediated trans-activation. , 1990, Disease markers.