The role of mesoscale variability on plankton dynamics in the North Atlantic

The intensive field observational phase of JGOFS in the North Atlantic Ocean has shown the importance of oceanic mesoscale variability on biogeochemical cycles and on the strength of the ocean biological pump. Mesoscale physical dynamics govern the major time/space scales of bulk biological variability (biomass, production and export). Mesoscale eddies seem to have a strong impact on the ecosystem structure and functioning, but observational evidence is rather limited. For the signature of the mesoscale features to exist in the ecosystem, the comparison of temporal scales of formation and evolution of mesoscale features and reaction of the ecosystem is a key factor. Biological patterns are driven by active changes in biological source and sink terms rather than simply by passive turbulent mixing. A first modelling assessment of the regional balances between horizontal and vertical eddy-induced nutrient supplies in the euphotic zone shows that the horizontal transport predominates over the vertical route in the subtropical gyre, whereas the reverse holds true for the other biogeochemical provinces of the North Atlantic. Presently, despite some difference in numbers, the net impact of modelled eddies yields an enhancement of the biological productivity in most provinces of the North Atlantic Ocean. Key issues remaining include variation on the mesoscale of subsurface particle and dissolved organic matter remineralization, improved knowledge of the ecological response to patterns of variability, synopticity in mesoscale surveys along with refining measures of biogeochemical time/space variability. Eventual success of assimilation of in situ and satellite data, still in its infancy in coupled physical/biogeochemical models, will be crucial to achieve JGOFS synthesis in answering which data are most informative, standing stocks or rates, and which ones are relevant. Depending on which end of the spectrum quantification of the effect of mesoscale features on production and community structure is required, complementary strategies are offered. Either one may choose to increase resolution of models up to the very fine mesoscale features scale (a few kms) for the high end, or to include a parametric representation of eddies for the low end.

[1]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[2]  Mark R. Abbott,et al.  Plankton patchiness: biology in the physical vernacular , 1985 .

[3]  Ann E. Gargett,et al.  Biological-Physical Interactions in the Upper Ocean: The Role of Vertical and Small Scale Transport Processes , 1995 .

[4]  M. Maltrud,et al.  Numerical simulation of the North Atlantic Ocean at 1/10 degrees , 2000 .

[5]  K. Denman The variance spectrum of phytoplankton in a turbulent ocean , 1976 .

[6]  A. E. Gill Atmosphere-Ocean Dynamics , 1982 .

[7]  R. Hanson The Changing Ocean Carbon Cycle , 2000 .

[8]  A. Oschlies,et al.  Sensitivity of ecosystem parameters to simulated satellite ocean color data using a coupled physical-biological model of the North Atlantic , 1999 .

[9]  W. Jenkins Tritium and 3 He in the Sargasso Sea by , 2022 .

[10]  Andreas Oschlies,et al.  Assimilation of Geosat altimeter data into an eddy-resolving primitive equation model of the North Atlantic Ocean , 1996 .

[11]  C. Boissier,et al.  Spatial scales of mesoscale variability in the North Atlantic as deduced from Geosat data , 1990 .

[12]  Tommy D. Dickey,et al.  Initial results from the Bermuda Testbed Mooring program , 1998 .

[13]  Richard J. Matear,et al.  Parameter optimization and analysis of ecosystem models using simulated annealing: a case study at Station P , 1995 .

[14]  S. Spall,et al.  A numerical model of mesoscale frontal instabilities and plankton dynamics — I. Model formulation and initial experiments , 2000 .

[15]  Adrian P. Martin,et al.  Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy , 2001 .

[16]  George C. Hurtt,et al.  A pelagic ecosystem model calibrated with BATS and OWSI data , 1999 .

[17]  C. L. Smith,et al.  The impact of mesoscale eddies on plankton dynamics in the upper ocean , 1996 .

[18]  B. Jones,et al.  Eddy stirring and phytoplankton patchiness in the subarctic North Atlantic in late summer , 1998 .

[19]  D. Siegel,et al.  Mesoscale Eddies, Satellite Altimetry, and New Production in the Sargasso Sea , 1999 .

[20]  V. Garçon,et al.  Impact of the North Equatorial Current meandering on a pelagic ecosystem: A modeling approach , 1996 .

[21]  James G. Richman,et al.  Data assimilation and a pelagic ecosystem model: parameterization using time series observations , 1998 .

[22]  M. Fuentes,et al.  Spatial Structure of the SeaWiFS Ocean Color Data for the North Atlantic Ocean , 2000 .

[23]  A. Longhurst Seasonal cycles of pelagic production and consumption , 1995 .

[24]  Michel Rixen,et al.  Diagnosis of vertical velocities with the QG omega equation: an examination of the errors due to sampling strategy , 2001 .

[25]  David Archer,et al.  Modeling the impact of fronts and mesoscale circulation on the nutrient supply and biogeochemistry of the upper ocean , 2000 .

[26]  A. Oschlies,et al.  An eddy‐permitting coupled physical‐biological model of the North Atlantic: 1. Sensitivity to advection numerics and mixed layer physics , 1999 .

[27]  D. Siegel,et al.  Mesoscale eddy diffusion, particle sinking, and the interpretation of sediment trap data , 1990 .

[28]  J. Bauer,et al.  Ocean margins as a significant source of organic matter to the deep open ocean , 1998, Nature.

[29]  J. Green,et al.  Transfer properties of the large‐scale eddies and the general circulation of the atmosphere , 1970 .

[30]  V. Strass,et al.  Chlorophyll patchiness caused by mesoscale upwelling at fronts , 1992 .

[31]  V. Strass,et al.  Horizontal and Seasonal Variation of Density and Chlorophyll Profiles between the Azores and Greenland , 1988 .

[32]  B. Irwin,et al.  Factors affecting the spatial pattern of the deep chlorophyll maximum in the region of the Azores front , 1985 .

[33]  A. Ōkubo,et al.  The chlorophyll fluctuation spectrum in the sea1,2 , 1977 .

[34]  A. Robinson,et al.  Eddy-induced nutrient supply and new production in the Sargasso Sea , 1997 .

[35]  Le P.Y. Traon,et al.  Time scales of mesoscale variability and their relationship with space scales in the North Atlantic , 1991 .

[36]  Allan R. Robinson,et al.  Coupled physical and biological modelling of the spring bloom in the North Atlantic (II): three dimensional bloom and post-bloom processes , 1995 .

[37]  Michio J. Kishi,et al.  Effects of interaction between two warm-core rings on phytoplankton distribution , 1994 .

[38]  O. Pfannkuche,et al.  Cyclonic cold-core eddy in the eastern North Atlantic. II. Nutrients, phytoplankton and bacterioplankton , 1987 .

[39]  Andreas Oschlies,et al.  Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean , 1998, Nature.

[40]  Frank E. Hoge,et al.  Mesoscale and upper ocean variabilities during the 1989 JGOFS bloom study , 1993 .

[41]  D. Stammer,et al.  On the generation and role of eddy variability in the central North Atlantic Ocean , 1994 .

[42]  W. Krauss The Warmwatersphere of the North Atlantic Ocean , 1996 .

[43]  E. Horne,et al.  Pigment transformation and vertical flux in an area of convergence in the North Atlantic , 1993 .

[44]  D. Siegel,et al.  Trajectories of sinking particles in the Sargasso Sea: modeling of statistical funnels above deep-ocean sediment traps , 1997 .

[45]  W. Koeve,et al.  Trajectories of sinking particles and the catchment areas above sediment traps in the northeast Atlantic , 2000 .

[46]  Carl Wunsch,et al.  Temporal changes in eddy energy of the oceans , 1999 .

[47]  G. Hurtt,et al.  A pelagic ecosystem model calibrated with BATS data , 1996 .

[48]  B. Karrasch,et al.  The role of mesoscale hydrography on microbial dynamics in the northeast Atlantic: Results of a spring bloom experiment , 1996 .

[49]  W. Jenkins,et al.  Nitrate flux into the euphotic zone near Bermuda , 1988, Nature.

[50]  W. Koeve,et al.  An unexpected nitrate distribution in the tropical North Atlantic at 18°N, 30°W—implications for new production , 1993 .

[51]  D. Stammer Global Characteristics of Ocean Variability Estimated from Regional TOPEX/POSEIDON Altimeter Measurements , 1997 .

[52]  G. Griffiths,et al.  Biological information from an Acoustic Doppler Current Profiler , 1993 .

[53]  W. Jenkins The use of anthropogenic tritium and helium-3 to study subtropical gyre ventilation and circulation , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[54]  Frank E. Hoge,et al.  Spatial Variability In Near-Surface Chlorophyll-A Fluorescence Measured By The Airborne Oceanographic Lidar (AOL) , 1993 .

[55]  A. Knap,et al.  Mesoscale Variations of Biogeochemical Properties in the Sargasso Sea , 1999 .

[56]  Anthony H. Knap,et al.  Overview of the U.S. JGOFS Bermuda Atlantic Time-series Study and the Hydrostation S program , 1996 .

[57]  F. Jochem,et al.  Productivity regime and phytoplankton size structure in the tropical and subtropical North Atlantic in spring 1989 , 1993 .

[58]  R. Onken Mesoscale Upwelling and Density Finestructure in the Seasonal Thermocline—A Dynamical Model , 1992 .

[59]  A. J. Bale,et al.  The Atlantic Meridional Transect: overview and synthesis of data , 2000 .

[60]  M. Brzezinski,et al.  New Chemical, Bio-Optical and Physical Observations of Upper Ocean Response to the Passage of a Mesoscale Eddy Off Bermuda , 1999 .

[61]  J. Toggweiler,et al.  A seasonal three‐dimensional ecosystem model of nitrogen cycling in the North Atlantic Euphotic Zone , 1993 .

[62]  D. Stammer On Eddy Characteristics, Eddy Transports, and Mean Flow Properties , 1998 .

[63]  A. Oschlies,et al.  An eddy‐permitting coupled physical‐biological model of the North Atlantic: 2. Ecosystem dynamics and comparison with satellite and JGOFS local studies data , 2000 .

[64]  H. Ducklow,et al.  A nitrogen-based model of plankton dynamics in the oceanic mixed layer , 1990 .

[65]  T. D. Dickey,et al.  Influence of mesoscale eddies on new production in the Sargasso Sea , 1998, Nature.

[66]  P. Gent,et al.  Parameterizing eddy-induced tracer transports in ocean circulation models , 1995 .

[67]  E. Hofmann,et al.  Time series sampling and data assimilation in a simple marine ecosystem model , 1996 .

[68]  G. Danabasoglu,et al.  The Role of Mesoscale Tracer Transports in the Global Ocean Circulation , 1994, Science.

[69]  Matthew H. England,et al.  Using chlorofluorocarbons to assess ocean climate models , 1995 .

[70]  K. Denman,et al.  Phytoplankton patchiness indicates the fluctuation spectrum of mesoscale oceanic structure , 1980, Nature.

[71]  P. Falkowski,et al.  Role of eddy pumping in enhancing primary production in the ocean , 1991, Nature.

[72]  T. Müller,et al.  Seven-year current meter record in the eastern North Atlantic , 1988 .

[73]  William J. Jenkins,et al.  Studying subtropical thermocline ventilation and circulation using tritium and 3He , 1998 .

[74]  R. Pingree,et al.  Coupling between physical and biological fields in the North Atlantic subtropical front southeast of the Azores , 1996 .

[75]  G. Evans,et al.  The Use of Optimization Techniques to Model Marine Ecosystem Dynamics at the JGOFS Station at 47 degrees N 20 degrees W [and Discussion] , 1995 .

[76]  John D. Woods,et al.  Scale Upwelling and Primary Production , 1988 .

[77]  Andreas Oschlies,et al.  Parameter estimates of a zero-dimensional ecosystem model applying the adjoint method , 2001 .

[78]  T. Dickey Recent Advances and Future Directions in Multi-Disciplinary In Situ Oceanographic Measurement Systems , 1988 .

[79]  Detlef Stammer,et al.  Generation and distribution of mesoscale eddies in the North Atlantic Ocean , 1996 .

[80]  M. Spall,et al.  Specification of eddy transfer coefficients in coarse resolution ocean circulation models , 1997 .

[81]  R. Pollard,et al.  Vorticity and vertical circulation at an ocean front , 1992 .

[82]  P. Flament,et al.  Cautionary remarks on the spectral interpretation of turbulent flows , 1985 .

[83]  G. Evans,et al.  The role of local models and data sets in the Joint Global Ocean Flux Study , 1999 .

[84]  H. Ducklow,et al.  Introduction to the JGOFS North Atlantic bloom experiment , 1993 .

[85]  T. Jickells,et al.  Temporal and spatial variability of biogenic particles fluxes during the JGOFS northeast Atlantic process studies at 47°N, 20°W , 1994 .

[86]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[87]  M. Follows,et al.  The Ekman transfer of nutrients and maintenance of new production over the North Atlantic , 1998 .